Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142573

RESUMO

According to previous studies, during Drosophila embryogenesis, the recruitment of RNA polymerase II precedes active gene transcription. This work is aimed at exploring whether this mechanism is used during Drosophila metamorphosis. In addition, the composition of the RNA polymerase II "paused" complexes associated with promoters at different developmental stages are described in detail. For this purpose, we performed ChIP-Seq analysis using antibodies for various modifications of RNA polymerase II (total, Pol II CTD Ser5P, and Pol II CTD Ser2P) as well as for subunits of the NELF, DSIF, and PAF complexes and Brd4/Fs(1)h that control transcription elongation. We found that during metamorphosis, similar to mid-embryogenesis, the promoters were bound by RNA polymerase II in the "paused" state, preparing for activation at later stages of development. During mid-embryogenesis, RNA polymerase II in a "pause" state was phosphorylated at Ser5 and Ser2 of Pol II CTD and bound the NELF, DSIF, and PAF complexes, but not Brd4/Fs(1)h. During metamorphosis, the "paused" RNA polymerase II complex included Brd4/Fs(1)h in addition to NELF, DSIF, and PAF. The RNA polymerase II in this complex was phosphorylated at Ser5 of Pol II CTD, but not at Ser2. These results indicate that, during mid-embryogenesis, RNA polymerase II stalls in the "post-pause" state, being phosphorylated at Ser2 of Pol II CTD (after the stage of p-TEFb action). During metamorphosis, the "pause" mechanism is closer to classical promoter-proximal pausing and is characterized by a low level of Pol II CTD Ser2P.


Assuntos
Proteínas de Drosophila , RNA Polimerase II , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica
2.
Sci Rep ; 11(1): 172, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420323

RESUMO

For many years it was believed that promoter-proximal RNA-polymerase II (Pol II) pausing manages the transcription of genes in Drosophila development by controlling spatiotemporal properties of their activation and repression. But the exact proteins that cooperate to stall Pol II in promoter-proximal regions of developmental genes are still largely unknown. The current work describes the molecular mechanism employed by the Negative ELongation Factor (NELF) to control the Pol II pause at genes whose transcription is induced by 20-hydroxyecdysone (20E). According to our data, the NELF complex is recruited to the promoters and enhancers of 20E-dependent genes. Its presence at the regulatory sites of 20E-dependent genes correlates with observed interaction between the NELF-A subunit and the ecdysone receptor (EcR). The complete NELF complex is formed at the 20E-dependent promoters and participates in both their induced transcriptional response and maintenance of the uninduced state to keep them ready for the forthcoming transcription. NELF depletion causes a significant decrease in transcription induced by 20E, which is associated with the disruption of Pol II elongation complexes. A considerable reduction in the promoter-bound level of the Spt5 subunit of transcription elongation factor DSIF was observed at the 20E-dependent genes upon NELF depletion. We presume that an important function of NELF is to participate in stabilizing the Pol II-DSIF complex, resulting in a significant impact on transcription of its target genes. In order to directly link NELF to regulation of 20E-dependent genes in development, we show the presence of NELF at the promoters of 20E-dependent genes during their active transcription in both embryogenesis and metamorphosis. We also demonstrate that 20E-dependent promoters, while temporarily inactive at the larval stage, preserve a Pol II paused state and bind NELF complex.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Ecdisona/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Núcleo Celular/metabolismo , Drosophila/citologia
3.
Insect Biochem Mol Biol ; 112: 103184, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31295549

RESUMO

The rate of carbohydrate metabolism is tightly coordinated with developmental transitions in Drosophila, and fluctuates depending on the requirements of a particular developmental stage. These successive metabolic switches result from changes in the expression levels of genes encoding glycolytic, tricarboxylic acid cycle (TCA), and oxidative phosphorylation enzymes. In this report, we describe a repressive action of ecdysone signaling on the expression of glycolytic genes and enzymes of glycogen metabolism in Drosophila development. The basis of this effect is an interaction between the ecdysone receptor (EcR) and the estrogen-related receptor (ERR), a specific regulator of the Drosophila glycolysis. We found an overlapping DNA-binding pattern for the EcR and ERR in the Drosophila S2 cells. EcR was detected at a subset of the ERR target genes responsible for carbohydrate metabolism. The 20-hydroxyecdysone treatment of both the Drosophila larvae and the S2 cells decreased transcriptional levels of ERR targets. We propose a joint action mode for both the EcR and ERR, for at least a subset of the glycolytic genes. We find that both receptors bind to the same regulatory regions and may form or be part of a joint transcriptional regulatory complex in the Drosophila S2 cells.


Assuntos
Metabolismo dos Carboidratos/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Esteroides/metabolismo , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Ecdisterona/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Estrogênio/genética , Receptores de Esteroides/genética
4.
Biochim Biophys Acta Gene Regul Mech ; 1861(2): 178-189, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29410380

RESUMO

Transcriptional activation is often represented as a "one-step process" that involves the simultaneous recruitment of co-activator proteins, leading to a change in gene status. Using Drosophila developmental ecdysone-dependent genes as a model, we demonstrated that activation of transcription is instead a continuous process that consists of a number of steps at which different phases of transcription (initiation or elongation) are stimulated. Thorough evaluation of the behaviour of multiple transcriptional complexes during the early activation process has shown that the pathways by which activation proceeds for different genes may vary considerably, even in response to the same induction signal. RNA polymerase II recruitment is an important step that is involved in one of the pathways. RNA polymerase II recruitment is accompanied by the recruitment of a significant number of transcriptional coactivators as well as slight changes in the chromatin structure. The second pathway involves the stimulation of transcriptional elongation as its key step. The level of coactivator binding to the promoter shows almost no increase, whereas chromatin modification levels change significantly.


Assuntos
Drosophila melanogaster/genética , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Ativação Transcricional/genética , Animais , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Ecdisona/farmacologia , Modelos Genéticos , Ligação Proteica , Interferência de RNA , RNA Polimerase II/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Tempo , Ativação Transcricional/efeitos dos fármacos , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA