Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 17(1): 439-449, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33326229

RESUMO

The molecular level understanding of electronic transport properties depends on the reliable theoretical description of charge-transfer (CT)-type electronic states. In this paper, the performance of spin-component-scaled variants of the popular CC2 and ADC(2) methods is evaluated for CT states, following benchmark strategies of earlier studies that revealed a compromised accuracy of the unmodified models. In addition to statistics on the accuracy of vertical excitation energies at equilibrium and infinite separation of bimolecular complexes, potential energy surfaces of the ammonia-fluorine complex are also reported. The results show the capability of spin-component-scaled approaches to reduce the large errors of their regular counterparts to a significant extent, outperforming even the coupled-cluster single and double method in many cases. The cost-effective scaled-opposite-spin variants are found to provide a remarkably good agreement with the CCSDT-3 reference data, thereby being recommended methods of choice in the study of charge-transfer states.

2.
J Chem Theory Comput ; 16(7): 4213-4225, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32502351

RESUMO

The numerous existing publications on benchmarking quantum chemistry methods for excited states rarely include Charge Transfer (CT) states, although many interesting phenomena in, e.g., biochemistry and material physics involve the transfer of electrons between fragments of the system. Therefore, it is timely to test the accuracy of quantum chemical methods for CT states, as well. In this study we first propose a new benchmark set consisting of dimers having low-energy CT states. On this set, the vertical excitation energy has been calculated with Coupled Cluster methods including triple excitations (CC3, CCSDT-3, CCSD(T)(a)*), as well as with methods including full or approximate doubles (CCSD, STEOM-CCSD, CC2, ADC(2), EOM-CCSD(2)). The results show that the popular CC2 and ADC(2) methods are much less accurate for CT states than for valence states. On the other hand, EOM-CCSD seems to have similar systematic overestimation of the excitation energies for both types of states. Among the triples methods the novel EOM-CCSD(T)(a)* method including noniterative triple excitations is found to stand out with its consistently good performance for all types of states, delivering essentially EOM-CCSDT quality results.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(1 Pt 2): 016102, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18351910

RESUMO

The structure of a network can significantly influence the properties of the dynamical processes that take place on them. While many studies have been paid to this influence, much less attention has been devoted to the interplay and feedback mechanisms between dynamical processes and network topology on adaptive networks. Adaptive rewiring of links can happen in real life systems such as acquaintance networks, where people are more likely to maintain a social connection if their views and values are similar. In our study, we consider different variants of a model for consensus formation. Our investigations reveal that the adaptation of the network topology fosters cluster formation by enhancing communication between agents of similar opinion, although it also promotes the division of these clusters. The temporal behavior is also strongly affected by adaptivity: while, on static networks, it is influenced by percolation properties, on adaptive networks, both the early and late time evolutions of the system are determined by the rewiring process. The investigation of a variant of the model reveals that the scenarios of transitions between consensus and polarized states are more robust on adaptive networks.

4.
Phys Rev Lett ; 100(15): 158701, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18518162

RESUMO

We investigate different opinion formation models on adaptive network topologies. Depending on the dynamical process, rewiring can either (i) lead to the elimination of interactions between agents in different states, and accelerate the convergence to a consensus state or break the network in noninteracting groups or (ii), counterintuitively, favor the existence of diverse interacting groups for exponentially long times. The mean-field analysis allows us to elucidate the mechanisms at play. Strikingly, allowing the interacting agents to bear more than one opinion at the same time drastically changes the model's behavior and leads to fast consensus.


Assuntos
Modelos Teóricos , Apoio Social , Ciências Sociais/métodos
5.
Phys Rev Lett ; 95(1): 018701, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16090662

RESUMO

We consider diffusion processes on power-law small-world networks in different dimensions. In one dimension, we find a rich phase diagram, with different transient and recurrent phases, including a critical line with continuously varying exponents. The results were obtained using self-consistent perturbation theory and can also be understood in terms of a scaling theory, which provides a general framework for understanding processes on small-world networks with different distributions of long-range links.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA