Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Molecules ; 27(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35268637

RESUMO

This study aimed to produce thermosensitive liposomes (TSL) by applying the quality by design (QbD) concept. In this paper, our research group collected and studied the parameters that significantly impact the quality of the liposomal product. Thermosensitive liposomes are vesicles used as drug delivery systems that release the active pharmaceutical ingredient in a targeted way at ~40-42 °C, i.e., in local hyperthermia. This study aimed to manufacture thermosensitive liposomes with a diameter of approximately 100 nm. The first TSLs were made from DPPC (1,2-dipalmitoyl-sn-glycerol-3-phosphocholine) and DSPC (1,2-dioctadecanoyl-sn-glycero-3-phosphocholine) phospholipids. Studies showed that the application of different types and ratios of lipids influences the thermal properties of liposomes. In this research, we made thermosensitive liposomes using a PEGylated lipid besides the previously mentioned phospholipids with the thin-film hydration method.


Assuntos
Lipossomos , Fosfolipídeos , Sistemas de Liberação de Medicamentos , Desenvolvimento de Medicamentos , Temperatura
2.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948054

RESUMO

The brain insulin metabolism alteration has been addressed as a pathophysiological factor underlying Alzheimer's disease (AD). Insulin can be beneficial in AD, but its macro-polypeptide nature negatively influences the chances of reaching the brain. The intranasal (IN) administration of therapeutics in AD suggests improved brain-targeting. Solid lipid nanoparticles (SLNs) and poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) are promising carriers to deliver the IN-administered insulin to the brain due to the enhancement of the drug permeability, which can even be improved by chitosan-coating. In the present study, uncoated and chitosan-coated insulin-loaded SLNs and PLGA NPs were formulated and characterized. The obtained NPs showed desirable physicochemical properties supporting IN applicability. The in vitro investigations revealed increased mucoadhesion, nasal diffusion, and drug release rate of both insulin-loaded nanocarriers over native insulin with the superiority of chitosan-coated SLNs. Cell-line studies on human nasal epithelial and brain endothelial cells proved the safety IN applicability of nanoparticles. Insulin-loaded nanoparticles showed improved insulin permeability through the nasal mucosa, which was promoted by chitosan-coating. However, native insulin exceeded the blood-brain barrier (BBB) permeation compared with nanoparticulate formulations. Encapsulating insulin into chitosan-coated NPs can be beneficial for ensuring structural stability, enhancing nasal absorption, followed by sustained drug release.


Assuntos
Encéfalo/citologia , Quitosana/química , Insulina/farmacologia , Nariz/citologia , Encéfalo/metabolismo , Linhagem Celular , Liberação Controlada de Fármacos , Células Endoteliais/química , Células Endoteliais/citologia , Insulina/química , Lipossomos/química , Nanopartículas/química , Nariz/química , Tamanho da Partícula , Ácido Poliglicólico/química
3.
Phys Chem Chem Phys ; 22(25): 13999-14012, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32555892

RESUMO

Here, we report on a one-pot mechanochemical ball milling synthesis of manganese oxide nanostructures synthesized at different milling speeds. The as-synthesized pure oxides and metal (Pt and Cu) doped oxides were tested in the hydrogenation of CO2 in the gas phase. Our study demonstrates the successful synthesis of the manganese oxide nanoparticles via mechano-chemical synthesis. We discovered that the milling speed could tune the crystal structure and the oxidation state of the manganese, which plays an essential role in the CO2 hydrogenation evidenced by ex situ XRD and XPS studies. The pure MnOx milled at 600 rpm showed high catalytic activity (∼20 000 nmol g-1 s-1) at 823 K, which can be attributed to the presence of Mn(ii) besides Mn(iii) and Mn(iv) on the surface under the reaction conditions. This study illustrates that the milling method is a cost-effective, simple way for the production of both pure, Pt-doped and Cu-loaded manganese nanocatalysts for heterogeneous catalytic reactions. Thus, we studied the Pt incorporation effect for the catalytic activity of MnOx using different Pt loading methods such as one-pot milling, wet impregnation and size-controlled 5 nm Pt loading via an ultrasonication-assisted method.

4.
Ideggyogy Sz ; 71(1-02): 35-42, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29465898

RESUMO

BACKGROUND AND PURPOSE: Nanoparticles of titanium dioxide are suspected neurotoxic agents and have numerous applications possibly resulting in human exposure by several ways including inhalation. In the present work, rats were exposed to spherical TiO2 nanoparticles of two different sizes by the intratracheal route. It was investigated how the neuro-functional alterations, detected by electrophysiological and behavioral methods, were related to the concentration of Ti in the tissue samples and what the influence of the size of the NPs was. METHODS: Rats (young adult Wistar males, 10/group) were exposed to TiO2 nanoparticles of ca. 10 and 100 nm diameter (suspension medium: neutral PBS with 1% hydroxyethyl cellulose) by intratracheal instillation in 5 and 18 mg/kg b.w. dose; 5 days per week for 6 weeks. Controls were instilled with saline, and vehicle controls, with the suspension medium. To see general toxicity, body weight was checked daily, and organ weights were measured at the end of experiment. Grip strength test, to assess motor function damage, was done before and after the 6-week treatment. Finally, the rats were anesthetized with urethane, spontaneous cortical activity and sensory evoked potentials were recorded, then the rats were dissected and tissue samples were taken for Ti level measurement. RESULTS: Body weight gain indicated no general toxicity, and no significant change in the relative organ weights, except that of the lungs, was seen. However, change of time-to-fall in the grip strength test, and latency of cortical evoked po-tentials, were altered in the treated groups, indicating functional damage. Correlation of these alterations with the cortical Ti level was dissimilar for the two sizes of nanoparticles. CONCLUSION: The results provided further support to the functional neurotoxicity of TiO2 nanoparticles. The exact role of particle size, and the mechanisms involved, remain to be elucidated.


Assuntos
Nanopartículas/toxicidade , Titânio/toxicidade , Animais , Humanos , Exposição por Inalação , Masculino , Tamanho da Partícula , Ratos , Ratos Wistar
5.
Molecules ; 22(11)2017 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-29156571

RESUMO

During the past 15 years, several genetically altered mouse models of human Alzheimer's disease (AD) have been developed. These costly models have greatly facilitated the evaluation of novel therapeutic approaches. Injecting synthetic ß-amyloid (Aß) 1-42 species into different parts of the brain of non-transgenic rodents frequently provided unreliable results, owing to a lack of a genuine characterization of the administered Aß aggregates. Previously, we have published a new rat AD-model in which protofibrillar-fibrillar Aß1-42 was administered into rat entorhinal cortex (Sipos 2007). In order to develop a more reliable model, we have injected well-characterized toxic soluble Aß1-42 species (oligomers, protofibrils and fibrils) intracerebroventricularly (icv) into rat brain. Studies of the distribution of fluorescent-labeled Aß1-42 in the brain showed that soluble Aß-species diffused into all parts of the rat brain. After seven days, the Aß-treated animals showed a significant decrease of spatial memory in Morris water maze test and impairment of synaptic plasticity (LTP) measured in acute hippocampal slices. The results of histological studies (decreased number of viable neurons, increased tau levels and decreased number of dendritic spines) also supported that icv administration of well-characterized toxic soluble Aß species into rat brain provides a reliable rat AD-model.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/uso terapêutico , Memória Espacial/efeitos dos fármacos , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/administração & dosagem , Animais , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos
6.
J Sci Food Agric ; 97(6): 1717-1724, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27435261

RESUMO

BACKGROUND: Inhalation of manganese-containing metal fumes at workplaces can cause central nervous damage including a Parkinson-like syndrome. Oxidative stress is likely to be involved in the pathomechanism, due to the presence of nano-sized metal oxide particles with high biological and chemical activity. Oxidative damage of the nervous system could be prevented or ameliorated by properly applied antioxidants, preferably natural ones such as green tea, a popular drink. The aim of this work was to see if orally applied green tea brew could diminish the functional neurotoxicity of manganese dioxide nanoparticles introduced into the airways of rats. RESULTS: Young adult male Wistar rats were treated intratracheally for 6 weeks with a suspension of synthetic MnO2 nanoparticles (4 mg/kg body weight), and received green tea brew (1 g leaves 200 mL-1 water) as drinking fluid. Reduced body weight gain, indicating general toxicity of the nanoparticles, was not influenced by green tea. However, in rats receiving green tea the nervous system effects - changes in the spontaneous and evoked cortical activity and peripheral nerve action potential - were diminished. CONCLUSION: The use of green tea as a neuroprotective functional drink seems to be a viable approach. © 2016 Society of Chemical Industry.


Assuntos
Doenças do Sistema Nervoso Central/prevenção & controle , Nanopartículas/toxicidade , Sistema Nervoso/efeitos dos fármacos , Óxidos/toxicidade , Extratos Vegetais/metabolismo , Chá/metabolismo , Animais , Antioxidantes/administração & dosagem , Antioxidantes/metabolismo , Doenças do Sistema Nervoso Central/etiologia , Doenças do Sistema Nervoso Central/metabolismo , Humanos , Masculino , Compostos de Manganês , Sistema Nervoso/metabolismo , Sistema Nervoso/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Ratos , Ratos Wistar , Chá/química
7.
Ideggyogy Sz ; 70(3-4): 127-135, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29870617

RESUMO

BACKGROUND AND PURPOSE: Particles of titanium dioxide (TiO2) with typical size below 100 nm have gained a broad range of application by now, partly involving direct human exposure. Their known properties - high specific surface, mobility within the organism, induction of oxidative stress, release of inflammation mediators etc. - raise the possibility of nervous system damage but the available data regarding this are scarce and contradictory. Based on that, and the experiences with other metal oxide nanoparticles, the aim of the present study was to investigate certain general end nervous system toxic effects of TiO2 nanoparticles applied in the airways of rats. METHODS: Young adult Wistar rats (5 groups of 10 rats each) received, daily for 28 days, intratracheal instillations of titanium dioxide nanoparticles of ca. 10 nm diameter, suspended in 1% hydroxyethyl cellulose dissolved in phosphate-buffered saline, in the doses of 1, 3, and 10 mg/kg b. w. Vehicle controls received the suspension medium and there was also an untreated control group. During treatment, the rats' body weight was measured, and their clinical state observed, daily. After the 28 days, spontaneous cortical activity, sensory evoked potentials and tail nerve action potential was recorded in urethane anesthesia, then the rats were dissected and tissue samples were taken for Ti level determination and biochemical measurements of some oxidative stress indicators. RESULTS: The two higher doses reduced the rate of body weight gain significantly. Sensory evoked potentials and tail nerve action potential were significantly slowed, but the change in the spectrum of spontaneous cortical activity was not significant. Correlation of moderate strength was found between certain evoked potential parameters and brain Ti level and oxidative stress data. CONCLUSION: Our results underlined the possible neurotoxicity of TiO2 NPs but also the need for further investigations.


Assuntos
Encéfalo/efeitos dos fármacos , Potenciais Somatossensoriais Evocados/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Animais , Eletroencefalografia , Estresse Oxidativo , Ratos , Ratos Wistar , Aumento de Peso/efeitos dos fármacos
8.
Materials (Basel) ; 17(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38998263

RESUMO

Given the current importance of using biochar for water treatment, it is important to study the physical-chemical properties to predict the behavior of the biochar adsorbent in contact with adsorbates. In the present research, the physical and chemical characteristics of three types of biochar derived from banana leaves were investigated, which is a poorly studied raw material and is considered an agricultural waste in some Latin American, Asian, and African countries. The characterization of non-modified biochar samples pyrolyzed at 300, 400, and 500 °C was carried out through pH, scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and specific surface area measurements. The adsorption properties of banana leaf-derived biochar were evaluated by ammonium ion adsorption experiments. The results demonstrated that the pyrolysis temperature has a large impact on the yield, structure, elemental composition, and surface chemistry of the biochar. Biochar prepared at 300 °C is the most efficient for NH4+ adsorption, achieving a capacity of 7.0 mg of adsorbed NH4+ on each gram of biochar used, while biochar samples prepared at 400 and 500 °C show lower values of 6.1 and 5.6 mg/g, respectively. The Harkins-Jura isotherm model fits the experimental data best for all biochar samples, demonstrating that multilayer adsorption occurs on our biochar.

9.
Heliyon ; 10(10): e31495, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38826707

RESUMO

Industrial, e.g. food industrial and domestic wastewaters contain huge amount of compounds causing eutrophication, and should be removed with high cost during wastewater treatment. However, these compounds could be utilized as fertilizers too. Biochar can remove a wide range of pollutants from water, such as ammonium, which can be found in relatively high concentration in dairy wastewaters. However, adsorption performance may be affected by the presence of other wastewater pollutants. Thus, this study aims to determine the efficiency of biochar as an adsorbent of ammonium in aqueous solutions in the presence of some selected organic compounds of typical dairy wastewaters such as bovine serum albumin (BSA), lactose, and acetic acid. Methods: The biochar was produced from banana leaves at 300 °C, modified with NaOH, and characterized by Scanning Electron Microscope - Energy Dispersive X-Ray Spectroscopy (SEM-EDX), Fourier-transform infrared spectra (FTIR) analysis, and specific surface area measurements. Batch experiments were carried out to investigate the ammonium adsorption capacity and the ion competitive adsorption mechanism. Significant Findings: Results show that the surface structure of the biochar derived from banana leaves is different from other biochars previously studied; although the specific surface area is not very considerable and despite having nitrogen within the elemental composition, the biochar studied is capable of adsorbing 2.60 mg NH4+/m2, the highest ammonium removal in 2 h occurs at pH 9 and 500 mg biochar dose. Langmuir model in the monolayer phase analysis fits better for all scenarios and the maximum NH4+ adsorption capacity was 0.97 mg/g without organic compounds. In the multilayer adsorption phase, the isotherm model that best fits the data obtained is the Harkins-Jura model without organic compounds. The presence of organic compounds in the aqueous solution significantly impacts the adsorption of ammonium by biochar since it improves the adsorption capacity (1.132 mg/g BSA, 0.975 mg/g lactose, and 1.874 mg/g acetic acid). The Aranovich-Donohue isotherm model fitted the data obtained during ion competitive adsorption experiments well.

10.
Environ Sci Pollut Res Int ; 31(9): 13673-13687, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38261222

RESUMO

Regulation of antibiotic use in aquaculture calls for the emergence of more sustainable alternative treatments. Tea polyphenols (GTE), particularly epigallocatechin gallate (EGCG), have various biological activities. However, tea polyphenols are susceptible to degradation. In this work, EGCG and GTE were encapsulated in zein nanoparticles (ZNP) stabilized with alginate (ALG) and chitosan (CS) to reduce the degradation effect. ALG-coated ZNP and ALG/CS-coated ZNP encapsulating EGCG or GTE were obtained with a hydrodynamic size of less than 300 nm, an absolute ζ-potential value >30 mV, and an encapsulation efficiency greater than 75%. The antioxidant capacity of the encapsulated substances, although lower than that of the free ones, maintained high levels. On the other hand, the evaluation of antimicrobial activity showed greater efficiency in terms of growth inhibition for ALG/CS-ZNP formulations, with average overall values of around 60%, reaching an inhibition of more than 90% for Photobacterium damselae. These results support encapsulation as a good strategy for tea polyphenols, as it allows maintaining significant levels of antioxidant activity and increasing the potential for antimicrobial activity, in addition to increasing protection against sources of degradation.


Assuntos
Quitosana , Nanopartículas , Compostos Organometálicos , Piridinas , Zeína , Animais , Antioxidantes/farmacologia , Antioxidantes/análise , Alginatos , Polifenóis/farmacologia , Antibacterianos/farmacologia , Chá
11.
Foods ; 13(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39200570

RESUMO

Pure water scarcity is the most significant emerging challenge of the modern society. Various organics such as pesticides (clomazone, quinmerac), pharmaceuticals (ciprofloxacin, 17α-ethynilestradiol), and mycotoxins (deoxynivalenol) can be found in the aquatic environment. The aim of this study was to fabricate ZnO nanomaterial on the basis of banana peel extract (ZnO/BPE) and investigate its efficiency in the photocatalytic degradation of selected organics under various experimental conditions. Newly synthesized ZnO/BPE nanomaterials were fully characterized by the XRD, FTIR, SEM-EPS, XPS, and BET techniques, which confirmed the successful formation of ZnO nanomaterials. The photocatalytic experiments showed that the optimal catalyst loading of ZnO/BPE was 0.5 mg/cm3, while the initial pH did not influence the degradation efficiency. The reusability of the ZnO/BPE nanomaterial was also tested, and minimal activity loss was found after three photocatalytic cycles. The photocatalytic efficiency of pure banana peel extract (BPE) was also studied, and the obtained data showed high removal of ciprofloxacin and 17α-ethynilestradiol. Finally, the influence of water from Danube River was also examined based on the degradation efficiency of selected pollutants. These results showed an enhanced removal of ciprofloxacin in water from the Danube River, while in the case of other pollutants, the treatment was less effective.

12.
Heliyon ; 9(6): e17154, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484393

RESUMO

The wastewater of the dye industry can be characterized by a complex chemical composition and consists of numerous dyes. Bioadsorbents are increasingly applied for the biosorption of dyes because they are inexpensive and environmentally friendly. Rice husk (RH) is a potential agricultural waste that can be converted into a bioadsorbents for the biosorption of cationic dyes. Herein, the removal of methylene blue (MB) and basic red 9 (BR9) dyes by Hungarian rice husk (HRH) and Indonesian rice husk (IRH) using binary biosorption was investigated. Adsorbents were characterized by zeta potential, Fourier-transform infrared spectroscopy, and scanning electron microscopy. Batch biosorption evaluated the influence of different variables, including pH, adsorbent dose, contact time, and initial concentrations. Several factors that influence the biosorption of MB and BR9 onto rice husk were assessed using main effect, Pareto charts, normal probability plots, and interaction effect in a factorial design. The optimum contact time was 60 min. Isotherm and kinetic models of MB and BR9 in binary biosorption fitted to the Brunauer-Emmett-Teller multilayer and the Elovich equation based on correlation coefficients and nonlinear chi-square. Results showed that the biosorption capacity of HRH was 10.4 mg/g for MB and 10 mg/g for BR9; values for IRH were 9.3 mg/g and 9.6 mg/g, respectively. Therefore, HRH and IRH were found to be effective adsorbents for removing MB and BR9 via binary biosorption.

13.
Toxicol Ind Health ; 28(10): 933-41, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22246446

RESUMO

Cadmium (Cd) is a metal used in various industrial applications, thereby causing exposure to Cd-containing fumes. The submicron-sized particles in the fumes represent an extra risk due to their high mobility within the organism and high surface area. Toxicity of Cd on the liver, kidney and bones is well known, but there are less data on its neurotoxicity. Here, male Wistar rats were treated for 3 and 6 weeks by intratracheal instillation of cadmium oxide nanosuspension. The body weight gain in treated rats was significantly decreased, and in the rats treated with high dose (0.4 mg/kg Cd daily), there was a significant increase in the weight of lungs and thymus. In this group, the spectrum of spontaneous cortical electrical activity was shifted to higher frequencies, the latency of sensory-evoked potentials was lengthened, and the frequency following ability of the somatosensory evoked potential was impaired--even without detectable Cd deposition in the brain. The data support the role of the nano-sized Cd in the causation of nervous system damage and show the possibility of modeling human neurotoxic damage in rats.


Assuntos
Cádmio/toxicidade , Eletroencefalografia/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Química Encefálica , Cádmio/análise , Potenciais Somatossensoriais Evocados/efeitos dos fármacos , Glutationa/metabolismo , Exposição por Inalação , Pulmão/anatomia & histologia , Pulmão/química , Pulmão/efeitos dos fármacos , Masculino , Tamanho do Órgão/efeitos dos fármacos , Tamanho da Partícula , Ratos , Ratos Wistar , Timo/anatomia & histologia , Timo/química , Timo/efeitos dos fármacos , Testes de Toxicidade Subaguda
14.
Sports (Basel) ; 10(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36287770

RESUMO

Sports facilities play a very important role in educating people about the benefits of a healthy lifestyle, and the examination of their spatial distribution is one of the important research areas of sport geography, a field of study becoming increasingly important in recent times. In this spirit, the aim of this paper is to present the spatial distribution of sports facilities in a specific Hungarian sample area, the Észak-Alföld (Northern Great Plain) region, to point out the differences between settlements, as well as the reasons behind these differences. Data received from the local authorities and state administration bodies were used for the preparation of the study, which included the different sports facilities at the settlement level in addition to information found on the Internet. The following conclusions were drawn based on the research. First of all, it was found that the settlement size significantly influences the spatial distribution of sports facilities, inter alia, larger settlements with larger populations boast increased demand and higher purchasing power and also have more enhanced and more diverse sports infrastructure. Secondly, in the case of competitive sports, the size of settlements is less relevant; there are only insignificant differences between the settlements of different sizes. This can be explained by the fact that almost all settlements have their own football pitch. Thirdly, the administrative role of the settlements was also found to be significant since settlements being on higher levels of the hierarchy (district centres, county seats) always have better facilities.

15.
Pharmaceutics ; 14(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36145546

RESUMO

Liposomal formulations, as versatile nanocarrier systems suitable for targeted delivery, have a highly focused role in the therapy development of unmet clinical needs and diagnostic imaging techniques. Formulating nanomedicine with suitable zeta potential is an essential but challenging task. Formulations with a minimum ±30 mV zeta potential are considered stable. The charge of the phospholipid bilayer can be adjusted with membrane additives. The present Quality by Design-derived study aimed to optimise liposomal formulations prepared via the thin-film hydration technique by applying stearylamine (SA) or dicetyl phosphate (DCP) as charge imparting agents. This 32 fractional factorial design-based study determined phosphatidylcholine, cholesterol, and SA/DCP molar ratios for liposomes with characteristics meeting the formulation requirements. The polynomials describing the effects on the zeta potential were calculated. The optimal molar ratios of the lipids were given as 12.0:5.0:5.0 for the SA-PBS pH 5.6 (optimised sample containing stearylamine) and 8.5:4.5:6.5 for the DCP-PBS pH 5.6 (optimised sample containing dicetyl phosphate) particles hydrated with phosphate-buffered saline pH 5.6. The SA-PBS pH 5.6 liposomes had a vesicle size of 108 ± 15 nm, 0.20 ± 0.04 polydispersity index, and +30.1 ± 1.2 mV zeta potential, while these values were given as 88 ± 14 nm, 0.21 ± 0.02, and -36.7 ± 3.3 mV for the DCP-PBS pH 5.6 vesicles. The prepared liposomes acquired the requirements of the zeta potential for stable formulations.

16.
J Appl Toxicol ; 31(5): 471-6, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21351111

RESUMO

Cadmium, a toxic heavy metal with various applications in technology, can affect people both by environmental (foodborne) and occupational (inhalation) exposure and can cause nervous system damage. To model this, rats were subacutely treated either with CdCl(2) solution per os (3.0 mg kg(-1) b.w.) or nanoparticulate CdO(2) (particle size ca 65 nm) by intratracheal instillation (0.04 mg kg(-1) b.w.) alone or in sequential combination. Nervous system effects were observed at different levels of function (open field behavior, cortical electrical activity, nerve action potential) and some general toxicological indicators were also measured. Three weeks of oral plus one week of intratracheal exposure caused significant reduction of body weight gain and open field motility. Lengthening of latency of sensory evoked potentials, observed in all treated rats, was also the most significant in the group receiving oral plus intratracheal treatment. Conduction velocity of the tail nerve was likewise decreased in all treated groups. Several of the effects pointed to a potentiating interaction between the two forms of Cd. Modeling environmental and occupational Cd exposure by oral and intratracheal application in rats was feasible, with results suggesting serious negative health effects in humans suffering such a combined exposure.


Assuntos
Cloreto de Cádmio/toxicidade , Compostos de Cálcio/toxicidade , Poluentes Ambientais/toxicidade , Nanopartículas Metálicas/toxicidade , Sistema Nervoso/efeitos dos fármacos , Óxidos/toxicidade , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Administração Oral , Animais , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Córtex Cerebral/efeitos dos fármacos , Estimulação Elétrica , Eletroencefalografia , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Comportamento Exploratório/efeitos dos fármacos , Intubação Intratraqueal , Fígado/efeitos dos fármacos , Fígado/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Atividade Motora/efeitos dos fármacos , Sistema Nervoso/fisiopatologia , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Wistar , Medição de Risco
17.
Pharmaceutics ; 13(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34371762

RESUMO

Liposomal formulation development is a challenging process. Certain factors have a critical influence on the characteristics of the liposomes, and even the relevant properties can vary based on the predefined interests of the research. In this paper, a Quality by Design-guided and Risk Assessment (RA)-based study was performed to determine the Critical Material Attributes and the Critical Process Parameters of an "intermediate" active pharmaceutical ingredient-free liposome formulation prepared via the thin-film hydration method, collect the Critical Quality Attributes of the future carrier system and show the process of narrowing a general initial RA for a specific case. The theoretical liposome design was proved through experimental models. The investigated critical factors covered the working temperature, the ratio between the wall-forming agents (phosphatidylcholine and cholesterol), the PEGylated phospholipid content (DPPE-PEG2000), the type of the hydration media (saline or phosphate-buffered saline solutions) and the cryoprotectants (glucose, sorbitol or trehalose). The characterisation results (size, surface charge, thermodynamic behaviours, formed structure and bonds) of the prepared liposomes supported the outcomes of the updated RA. The findings can be used as a basis for a particular study with specified circumstances.

18.
Materials (Basel) ; 15(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35009197

RESUMO

The comparison of the efficiency of the commercially available photocatalysts, TiO2 and ZnO, irradiated with 365 nm and 398 nm light, is presented for the removal of two antibiotics, sulfamethazine (SMT) and sulfamethoxypyridazine (SMP). The •OH formation rate was compared using coumarin, and higher efficiency was proved for TiO2 than ZnO, while for 1,4-benzoquinone in O2-free suspensions, the higher contribution of the photogenerated electrons to the conversion was observed for ZnO than TiO2, especially at 398 nm irradiation. An extremely fast transformation and high quantum yield of SMP in the TiO2/LED398nm process were observed. The transformation was fast in both O2 containing and O2-free suspensions and takes place via desulfonation, while in other cases, mainly hydroxylated products form. The effect of reaction parameters (methanol, dissolved O2 content, HCO3- and Cl-) confirmed that a quite rarely observed energy transfer between the excited state P25 and SMP might be responsible for this unique behavior. In our opinion, these results highlight that "non-conventional" mechanisms could occur even in the case of the well-known TiO2 photocatalyst, and the effect of wavelength is also worth investigating.

19.
J Colloid Interface Sci ; 598: 93-103, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33894618

RESUMO

HYPOTHESIS: Self-similarity is a scale-invariant irregularity that can assist in designing a robust superhydrophobic material. A combinatorial design strategy involving self-similarity and dual-length scale can be employed to create a new library of a doubly re-entrant, disordered, and porous network of superhydrophobic materials. Asymmetric wettability can be engineered in nonwoven materials by rendering them with superhydrophobic characteristics on one side. EXPERIMENTS: A facile, scalable, and inexpensive spray-coating technique was used to decorate the weakly hydrophobicstearate-treatedtitanate nanowires (TiONWs)over the self-similar nonwoven material. Laser scanning confocal microscopy was employed to image the impalement dynamics in three dimensions. With the aid of X-ray microcomputed tomography analysis, the three-dimensional (3D) nonwoven structural parameters were obtained and analyzed. The underwater superhydrophobic behavior of the prepared samples was investigated. FINDINGS: A classic 'lotus effect' has been successfully endowed in self-similar nonwoven-titanate nanostructured materials (SS-Ti-NMs) from a nonwoven material that housed the air pockets in bulk and water repellent TiONWs on the surface. The finer fiber-based SS-Ti-NMs exhibited lower roll-off angles and a thinner layer of water on its surface. An asymmetric wettability and the unusual display of underwater superhydrophobic behavior of SS-Ti-NMs have been uncovered.

20.
Eur J Pharm Sci ; 166: 105960, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34339828

RESUMO

Our study aimed to formulate a novel dexamethasone (DXM)-loaded, mixed polymeric micelle-based drug delivery system, focusing on the auspicious nose-to-brain pathway, as a key delivery route to treat central nervous system (CNS) associated diseases. Polymeric micelles might be a solution to deliver drugs to the place of action compared to conventional formulations. Due to low Z-average (89.92 ± 2.7 nm), a polydispersity index of 0.216 ± 0.014 and high surface polarity (52.23%), a significant increase in water solubility (14-fold) was experienced. This increase resulted in favourable dissolution profile at nasal and axonal conditions with high in vitro permeability value (14.6×10-6 cm/s) on polar brain (porcine) lipid extract. Modified Side-bi-side® type diffusion study confirmed rapid and efficient passive diffusion through the nasal mucosa contributed by strong mucoadhesive properties. The final formulation met all the requirements of a nasal drug delivery system with rapid onset of action, meaning DXM can reach the CNS and there it can exert its beneficial effects in pathological conditions.


Assuntos
Portadores de Fármacos , Micelas , Animais , Dexametasona , Sistemas de Liberação de Medicamentos , Tamanho da Partícula , Polímeros , Solubilidade , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA