Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biochemistry (Mosc) ; 88(8): 1045-1060, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37758306

RESUMO

This review analyzes data available in the literature on the rates, characteristics, and mechanisms of oxygen reduction to a superoxide anion radical at the sites of photosynthetic electron transport chain where this reduction has been established. The existing assumptions about the role of the components of these sites in this process are critically examined using thermodynamic approaches and results of the recent studies. The process of O2 reduction at the acceptor side of PSI, which is considered the main site of this process taking place in the photosynthetic chain, is described in detail. Evolution of photosynthetic apparatus in the context of controlling the leakage of electrons to O2 is explored. The reasons limiting application of the results obtained with the isolated segments of the photosynthetic chain to estimate the rates of O2 reduction at the corresponding sites in the intact thylakoid membrane are discussed.

2.
Plant Cell Physiol ; 57(7): 1397-1404, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27016099

RESUMO

The review is dedicated to ascertainment of the roles of the electron transfer cofactors of the pigment-protein complex of PSI, ferredoxin (Fd) and ferredoxin-NADP reductase in oxygen reduction in the photosynthetic electron transport chain (PETC) in the light. The data regarding oxygen reduction in other segments of the PETC are briefly analyzed, and it is concluded that their participation in the overall process in the PETC under unstressful conditions should be insignificant. Data concerning the contribution of Fd to the oxygen reduction in the PETC are examined. A set of collateral evidence as well as results of direct measurements of the involvement of Fd in this process in the presence of isolated thylakoids led to the inference that this contribution in vivo is negligible. The increase in oxygen reduction rate in the isolated thylakoids in the presence of either Fd or Fd plus NADP+ under increasing light intensity was attributed to the increase in oxygen reduction executed by the membrane-bound oxygen reductants. Data are presented which imply that a main reductant of the O2 molecule in the terminal reducing segment of the PETC is the electron transfer cofactor of PSI, phylloquinone. The physiological significance of characteristic properties of oxygen reductants in this segment of the PETC is discussed.


Assuntos
Cloroplastos/metabolismo , Oxigênio/metabolismo , Fotossíntese , Transporte de Elétrons , Ferredoxinas/metabolismo , Oxirredução
3.
J Exp Bot ; 66(22): 7151-64, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26324464

RESUMO

Higher plants possess the ability to trigger a long-term acclimatory response to different environmental light conditions through the regulation of the light-harvesting antenna size of photosystem II. The present study provides an insight into the molecular nature of the signal which initiates the high light-mediated response of a reduction in antenna size. Using barley (Hordeum vulgare) plants, it is shown (i) that the light-harvesting antenna size is not reduced in high light with a low hydrogen peroxide content in the leaves; and (ii) that a decrease in the antenna size is observed in low light in the presence of an elevated concentration of hydrogen peroxide in the leaves. In particular, it has been demonstrated that the ability to reduce the antenna size of photosystem II in high light is restricted to photosynthetic apparatus with a reduced level of the plastoquinone pool and with a low hydrogen peroxide content. Conversely, the reduction of antenna size in low light is induced in photosynthetic apparatus possessing elevated hydrogen peroxide even when the reduction level of the plastoquinone pool is low. Hydrogen peroxide affects the relative abundance of the antenna proteins that modulate the antenna size of photosystem II through a down-regulation of the corresponding lhcb mRNA levels. This work shows that hydrogen peroxide contributes to triggering the photosynthetic apparatus response for the reduction of the antenna size of photosystem II by being the molecular signal for the long-term acclimation of plants to high light.


Assuntos
Aclimatação , Peróxido de Hidrogênio/metabolismo , Luz , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Transdução de Sinais , Aclimatação/efeitos da radiação , Hordeum , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/efeitos da radiação , Folhas de Planta/metabolismo , Transdução de Sinais/efeitos da radiação
4.
Protoplasma ; 261(1): 65-75, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37462717

RESUMO

Solar energy absorbed by plants can be redistributed between photosystems in the process termed "state transitions" (ST). ST represents a reversible transition of a part of the PSII light harvesting complex (L-LHCII) between photosystem II (PSII) and photosystem I (PSI) in response to the change in light spectral composition. The present work demonstrates a slower development of the state 1 to state 2 transition, i.e., L-LHCII transition from PSII to PSI, in the leaves of dicotyledonous arabidopsis (Arabidopsis thaliana) than in the leaves of monocotyledonous barley (Hordeum vulgare) plants that was assessed by the measurement of chlorophyll a fluorescence at 77 K and of chlorophyll a fluorescence at room temperature. It is known that the first step of the state 1 to state 2 transition is phosphorylation of Lhcb1 and Lhcb2 proteins; however, we detected no difference in the rate of accumulation of these phosphorylated proteins in the studied plants. Therefore, the parameters, which possibly affect the second step of this transition, i.e., the migration of L-LHCII complexes along the thylakoid membrane, were evaluated. Spin-probe EPR measurements demonstrated that the thylakoid membranes viscosity in arabidopsis was higher compared to that in barley. Moreover, confocal microscopy data evidenced the different size of chloroplasts in the leaves of the studied species being larger in arabidopsis. The obtained results suggest that the observed deference in the development of the state 1 to state 2 transition in arabidopsis and barley is caused by the slower L-LHCII migration rate in arabidopsis than in barley plants rather than by the difference in the Lhcb1 and Lhcb2 phosphorylation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hordeum , Arabidopsis/metabolismo , Iluminação , Clorofila A/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Fosforilação , Luz
5.
Biochim Biophys Acta ; 1817(8): 1314-21, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22421105

RESUMO

Light-induced generation of superoxide radicals and hydrogen peroxide in isolated thylakoids has been studied with a lipophilic spin probe, cyclic hydroxylamine 1-hydroxy-4-isobutyramido-2,2,6,6-tetramethylpiperidinium (TMT-H) to detect superoxide radicals, and the spin trap α-(4-pyridyl-1-oxide)-N-tert-butylnitron (4-POBN) to detect hydrogen peroxide-derived hydroxyl radicals. Accumulation of the radical products of the above reactions has been followed using electron paramagnetic resonance. It is found that the increased production of superoxide radicals and hydrogen peroxide in higher light is due to the enhanced production of these species within the thylakoid membrane, rather than outside the membrane. Fluorescent probe Amplex red, which forms fluorescent product, resorufin, in the reaction with hydrogen peroxide, has been used to detect hydrogen peroxide outside isolated chloroplasts using confocal microscopy. Resorufin fluorescence outside the chloroplasts is found to be suppressed by 60% in the presence of the inhibitor of aquaporins, acetazolamide (AZA), indicating that hydrogen peroxide can diffuse through the chloroplast envelope aquaporins. It is demonstrated that AZA also inhibits carbonic anhydrase activity of the isolated envelope. We put forward a hypothesis that carbonic anhydrase presumably can be attached to the envelope aquaporins. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.


Assuntos
Aquaporinas/fisiologia , Cloroplastos/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxigênio/metabolismo , Fotossíntese , Acetazolamida/metabolismo , Difusão , Transporte de Elétrons , Luz , Superóxidos/metabolismo
6.
Plant Physiol Biochem ; 194: 246-262, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36436415

RESUMO

The warming is global problem. In natural environments, heat stress is usually accompanied by drought. Under drought conditions, water content decreases in both soil and air; yet,the effect of lower air humidity remains obscure. We supplied maize and barley plants with an unlimited source of water for the root uptake and studied the effect of relative air humidity under heat stress. Young plants were subjected for 48 h to several degrees of heat stress: moderate (37 °C), genuine (42 °C), and nearly lethal (46 °C). The conditions of lower air humidity decreased the photochemical activities of photosystem I and photosystem II. The small effect was revealed in the control (24 °C). Elevating temperature to 37 °C and 42 °C increased the relative activities of both photosystems; the photosystem II was activated more. Probably, this is why the effect of air humidity disappeared at 37 °C; the small inhibiting effect was observed at 42 °C. At 46 °C, lower air humidity substantially magnified the inhibitory effect of heat. As a result, the maximal and relative activities of both photosystems decreased in maize and barley; the photosystem II was inhibited more. Under the conditions of 46 °C at lower air humidity, the plant growth was greatly reduced. Maize plants increased water uptake by roots and survived; barley plants were unable to increase water uptake and died. Therefore, air humidity is an important component of environmental heat stress influencing activities of photosystem I and photosystem II and thereby plant growth and viability under severe stress conditions.


Assuntos
Clorofila , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Umidade , Temperatura Alta , Resposta ao Choque Térmico , Plantas/metabolismo , Água , Folhas de Planta/metabolismo
7.
Plants (Basel) ; 12(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37176821

RESUMO

The knockout of the At2g28210 gene encoding α-carbonic anhydrase 2 (α-CA2) in Arabidopsis thaliana (Columbia) led to alterations in photosynthetic processes. The effective quantum yields of both photosystem II (PSII) and photosystem I (PSI) were higher in α-carbonic anhydrase 2 knockout plants (α-CA2-KO), and the reduction state of plastoquinone pool was lower than in wild type (WT). The electron transport rate in the isolated thylakoids measured with methyl viologen was higher in α-CA2-KO plants. The amounts of reaction centers of PSII and PSI were similar in WT and α-CA2-KO plants. The non-photochemical quenching of chlorophyll a fluorescence in α-CA2-KO leaves was lower at the beginning of illumination, but became slightly higher than in WT leaves when the steady state was achieved. The degree of state transitions in the leaves was lower in α-CA2-KO than in WT plants. Measurements of the electrochromic carotenoid absorbance shift (ECS) revealed that the light-dependent pH gradient (ΔpH) across the thylakoid membrane was lower in the leaves of α-CA2-KO plants than in WT plants. The starch content in α-CA2-KO leaves was lower than in WT plants. The expression levels of the genes encoding chloroplast CAs in α-CA2-KO changed noticeably, whereas the expression levels of genes of cytoplasmic CAs remained almost the same. It is proposed that α-CA2 may be situated in the chloroplasts.

8.
Photosynth Res ; 105(1): 51-61, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20532996

RESUMO

The contribution to reduction of oxygen by ferredoxin (Fd) to the overall reduction of oxygen in isolated pea thylakoids was studied in the presence of Fd versus Fd + NADP(+). The overall rate of electron transport was measured using a determination of Photosystem II quantum yield from chlorophyll fluorescence parameters, and the rate of oxidation of Fd was measured from the light-induced redox changes of Fd. At low light intensity, increasing Fd concentration from 5 to 30 microM in the absence of NADP(+) increased the proportion of oxygen reduction by Fd from 25-35 to 40-60% in different experiments. This proportion decreased with increasing light intensity. When NADP(+) was added in the presence of 15 microM Fd, which was optimal for the NADP(+) reduction rate, the participation of Fd in the reduction of oxygen was low, no more than 10%, and it also decreased with increasing light intensity. At high light intensity, the overall oxygen reduction rates in the presence of Fd + NADP(+) and in the presence of Fd alone were comparable. The significance of reduction of dioxygen either by water-soluble Fd or by the membrane-bound carriers of the photosynthetic electron transport chain for redox signaling under different light intensities is discussed.


Assuntos
Ferredoxinas/metabolismo , Fotossíntese/fisiologia , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Transporte de Elétrons/fisiologia , Luz , Pisum sativum/efeitos da radiação , Fotossíntese/efeitos da radiação , Tilacoides/efeitos da radiação
9.
Front Plant Sci ; 11: 211, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231675

RESUMO

Recruitment of H2O as the final donor of electrons for light-governed reactions in photosynthesis has been an utmost breakthrough, bursting the evolution of life and leading to the accumulation of O2 molecules in the atmosphere. O2 molecule has a great potential to accept electrons from the components of the photosynthetic electron transfer chain (PETC) (so-called the Mehler reaction). Here we overview the Mehler reaction mechanisms, specifying the changes in the structure of the PETC of oxygenic phototrophs that probably had occurred as the result of evolutionary pressure to minimize the electron flow to O2. These changes are warranted by the fact that the efficient electron flow to O2 would decrease the quantum yield of photosynthesis. Moreover, the reduction of O2 leads to the formation of reactive oxygen species (ROS), namely, the superoxide anion radical and hydrogen peroxide, which cause oxidative stress to plant cells if they are accumulated at a significant amount. From another side, hydrogen peroxide acts as a signaling molecule. We particularly zoom in into the role of photosystem I (PSI) and the plastoquinone (PQ) pool in the Mehler reaction.

10.
Funct Plant Biol ; 45(2): 102-110, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32291025

RESUMO

Reduction of O2 molecule to superoxide radical, O2•-, in the photosynthetic electron transport chain is the first step of hydrogen peroxide, H2O2, production in chloroplasts in the light. The mechanisms of O2 reduction by ferredoxin, by the components of the plastoquinone pool, and by the electron transfer cofactors in PSI are analysed. The data indicating that O2•- and H2O2 can be produced both outside and within thylakoid membrane are presented. The H2O2 production in the chloroplast stroma is described as a result of either dismutation of O2•- or its reduction by stromal reductants. Formation of H2O2 within thylakoid membrane in the reaction of O2•- with plastohydroquinone is examined. The significance of both ways of H2O2 formation for specificity of the signal being sent by photosynthetic electron transport chain to cell adaptation systems is discussed.

11.
FEBS Lett ; 588(23): 4364-8, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25311539

RESUMO

O2 reduction was investigated in photosystem I (PSI) complexes isolated from cyanobacteria Synechocystis sp. PCC 6803 wild type (WT) and menB mutant strain, which is unable to synthesize phylloquinone and contains plastoquinone at the quinone-binding site A1. PSI complexes from WT and menB mutant exhibited different dependencies of O2 reduction on light intensity, namely, the values of O2 reduction rate in WT did not reach saturation at high intensities, in contrast to the values in menB mutant. The obtained results suggest the immediate phylloquinone involvement in the light-induced O2 reduction by PSI.


Assuntos
Luz , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Vitamina K 1/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Coenzimas/química , Coenzimas/metabolismo , Transporte de Elétrons/efeitos da radiação , Técnicas de Inativação de Genes , Modelos Moleculares , Conformação Molecular , Mutação , Synechocystis/enzimologia , Synechocystis/genética , Synechocystis/metabolismo , Synechocystis/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA