Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 27(11): 2768-2775, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34670661

RESUMO

Ehrlichiosis and anaplasmosis are emerging tickborne diseases that can also be transmitted through blood transfusions or organ transplants. Since 2000, ehrlichiosis and anaplasmosis cases in the United States have increased substantially, resulting in potential risk to transplant and transfusion recipients. We reviewed ehrlichiosis and anaplasmosis cases among blood transfusion and solid organ transplant recipients in the United States from peer-reviewed literature and Centers for Disease Control and Prevention investigations. We identified 132 cases during 1997-2020, 12 transfusion-associated cases and 120 cases in transplant recipients; 8 cases were donor-derived, and in 13 cases illness occurred <1 year after transplant. Disease in the remaining 99 cases occurred ≥1 year after transplant, suggesting donor-derived disease was unlikely. Severe illness or death were reported among 15 transfusion and transplant recipients. Clinicians should be alert for these possible infections among transfusion and transplant recipients to prevent severe complications or death by quickly treating them.


Assuntos
Anaplasmose , Ehrlichiose , Transplante de Órgãos , Anaplasmose/epidemiologia , Animais , Transfusão de Sangue , Ehrlichiose/epidemiologia , Humanos , Transplante de Órgãos/efeitos adversos , Transplantados , Estados Unidos/epidemiologia
2.
Emerg Infect Dis ; 27(4): 1216-1219, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33754993

RESUMO

The human cutaneous anthrax case-fatality rate is ≈1% when treated, 5%-20% when untreated. We report high case-fatality rates (median 35.0%; 95% CI 21.1%-66.7%) during 2005-2016 linked to livestock handling in northern Ghana, where veterinary resources are limited. Livestock vaccination and access to human treatment should be evaluated.


Assuntos
Antraz , Bacillus anthracis , Antraz/epidemiologia , Surtos de Doenças , Gana , Humanos , Fatores de Risco
3.
Emerg Infect Dis ; 27(12): 2999-3008, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34698628

RESUMO

Outcomes and costs of coronavirus disease (COVID-19) contact tracing are limited. During March-May 2020, we constructed transmission chains from 184 index cases and 1,499 contacts in Salt Lake County, Utah, USA, to assess outcomes and estimate staff time and salaries. We estimated 1,102 staff hours and $29,234 spent investigating index cases and contacts. Among contacts, 374 (25%) had COVID-19; secondary case detection rate was ≈31% among first-generation contacts, ≈16% among second- and third-generation contacts, and ≈12% among fourth-, fifth-, and sixth-generation contacts. At initial interview, 51% (187/370) of contacts were COVID-19-positive; 35% (98/277) became positive during 14-day quarantine. Median time from symptom onset to investigation was 7 days for index cases and 4 days for first-generation contacts. Contact tracing reduced the number of cases between contact generations and time between symptom onset and investigation but required substantial resources. Our findings can help jurisdictions allocate resources for contact tracing.


Assuntos
COVID-19 , Busca de Comunicante , Humanos , Quarentena , SARS-CoV-2 , Utah/epidemiologia
4.
MMWR Morb Mortal Wkly Rep ; 69(37): 1319-1323, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32941418

RESUMO

Reports suggest that children aged ≥10 years can efficiently transmit SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) (1,2). However, limited data are available on SARS-CoV-2 transmission from young children, particularly in child care settings (3). To better understand transmission from young children, contact tracing data collected from three COVID-19 outbreaks in child care facilities in Salt Lake County, Utah, during April 1-July 10, 2020, were retrospectively reviewed to explore attack rates and transmission patterns. A total of 184 persons, including 110 (60%) children had a known epidemiologic link to one of these three facilities. Among these persons, 31 confirmed COVID-19 cases occurred; 13 (42%) in children. Among pediatric patients with facility-associated confirmed COVID-19, all had mild or no symptoms. Twelve children acquired COVID-19 in child care facilities. Transmission was documented from these children to at least 12 (26%) of 46 nonfacility contacts (confirmed or probable cases). One parent was hospitalized. Transmission was observed from two of three children with confirmed, asymptomatic COVID-19. Detailed contact tracing data show that children can play a role in transmission from child care settings to household contacts. Having SARS-CoV-2 testing available, timely results, and testing of contacts of persons with COVID-19 in child care settings regardless of symptoms can help prevent transmission. CDC guidance for child care programs recommends the use of face masks, particularly among staff members, especially when children are too young to wear masks, along with hand hygiene, frequent cleaning and disinfecting of high-touch surfaces, and staying home when ill to reduce SARS-CoV-2 transmission (4).


Assuntos
Creches , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Surtos de Doenças , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Adolescente , Adulto , Idoso , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Criança , Pré-Escolar , Cidades/epidemiologia , Técnicas de Laboratório Clínico , Busca de Comunicante , Infecções por Coronavirus/diagnóstico , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2 , Utah/epidemiologia , Adulto Jovem
5.
Emerg Infect Dis ; 20(9): 1516-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25148590

RESUMO

A cholera outbreak began in Haiti during October, 2010. Spatiotemporal patterns of household-level cholera in Ouest Department showed that the initial clusters tended to follow major roadways; subsequent clusters occurred further inland. Our data highlight transmission pathway complexities and the need for case and household-level analysis to understand disease spread and optimize interventions.


Assuntos
Cólera/epidemiologia , Família , Análise Espaço-Temporal , Vibrio cholerae , Cólera/história , Cólera/transmissão , Análise por Conglomerados , Bases de Dados Factuais , Haiti/epidemiologia , História do Século XXI , Humanos , Incidência , Estações do Ano , População Urbana
6.
PLoS One ; 18(6): e0275125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37352280

RESUMO

BACKGROUND: Understanding the drivers of SARS-CoV-2 transmission can inform the development of interventions. We evaluated transmission identified by contact tracing investigations between March-May 2020 in Salt Lake County, Utah, to quantify the impact of this intervention and identify risk factors for transmission. METHODS: RT-PCR positive and untested symptomatic contacts were classified as confirmed and probable secondary case-patients, respectively. We compared the number of case-patients and close contacts generated by different groups, and used logistic regression to evaluate factors associated with transmission. RESULTS: Data were collected on 184 index case-patients and up to six generations of contacts. Of 1,499 close contacts, 374 (25%) were classified as secondary case-patients. Decreased transmission odds were observed for contacts aged <18 years (OR = 0.55 [95% CI: 0.38-0.79]), versus 18-44 years, and for workplace (OR = 0.36 [95% CI: 0.23-0.55]) and social (OR = 0.44 [95% CI: 0.28-0.66]) contacts, versus household contacts. Higher transmission odds were observed for case-patient's spouses than other household contacts (OR = 2.25 [95% CI: 1.52-3.35]). Compared to index case-patients identified in the community, secondary case-patients identified through contract-tracing generated significantly fewer close contacts and secondary case-patients of their own. Transmission was heterogeneous, with 41% of index case-patients generating 81% of directly-linked secondary case-patients. CONCLUSIONS: Given sufficient resources and complementary public health measures, contact tracing can contain known chains of SARS-CoV-2 transmission. Transmission is associated with age and exposure setting, and can be highly variable, with a few infections generating a disproportionately high share of onward transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Utah/epidemiologia , Busca de Comunicante , Fatores de Risco
7.
Open Forum Infect Dis ; 9(7): ofac221, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35873294

RESUMO

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmissible through lung transplantation, and outcomes among infected organ recipients may be severe. Transmission risk to extrapulmonary organ recipients and recent (within 30 days of transplantation) SARS-CoV-2-infected recipient outcomes are unclear. Methods: During March 2020-March 2021, potential SARS-CoV-2 transmissions through solid organ transplantation were investigated. Assessments included SARS-CoV-2 testing, medical record review, determination of likely transmission route, and recent recipient outcomes. Results: During March 2020-March 2021, approximately 42 740 organs were transplanted in the United States. Forty donors, who donated 140 organs to 125 recipients, were investigated. Nine (23%) donors and 25 (20%) recipients were SARS-CoV-2 positive by nucleic acid amplification test (NAAT). Most (22/25 [88%]) SARS-CoV-2-infected recipients had healthcare or community exposures. Nine SARS-CoV-2-infected donors donated 21 organs to 19 recipients. Of these, 3 lung recipients acquired SARS-CoV-2 infections from donors with negative SARS-CoV-2 testing of pretransplant upper respiratory tract specimens but from whom posttransplant lower respiratory tract (LRT) specimens were SARS-CoV-2 positive. Sixteen recipients of extrapulmonary organs from SARS-CoV-2-infected donors had no evidence of posttransplant COVID-19. All-cause mortality within 45 days after transplantation was 6-fold higher among SARS-CoV-2-infected recipients (9/25 [36%]) than those without (6/100 [6%]). Conclusions: Transplant-transmission of SARS-CoV-2 is uncommon. Pretransplant NAAT of lung donor LRT specimens may prevent transmission of SARS-CoV-2 through transplantation. Extrapulmonary organs from SARS-CoV-2-infected donors may be safely usable, although further study is needed. Reducing recent recipient exposures to SARS-CoV-2 should remain a focus of prevention.

8.
Transfus Med Rev ; 35(2): 78-84, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33934903

RESUMO

Despite advances in transfusion safety, concerns with safety of platelet transfusions remain including platelet-related sepsis and higher reaction rates observed among patients receiving apheresis platelets (APLTs). National Healthcare Safety Network (NHSN) Hemovigilance Module (HM) data were analyzed to quantify the burden and severity of adverse reactions occurring from APLTs and whole blood-derived platelets (WBD-PLTs). Facilities participating in NHSN HM during 2010-2018 were included. Adverse reaction rates (number per 100,000 components transfused) were calculated for APLTs and WBD-PLTs stratified by severity, use of platelet additive solution (PAS), and pathogen reduction technology (PRT). Chi-square tests were used to compare rates. During the study interval, 2,000,589 platelets were transfused: 1,435,154 APLTs; 525,902 WBD-PLTs; and among APLTs, 39,533 PRT-APLTs. APLT adverse reaction rates were higher (478 vs 70/ 100,000, P< .01) and more often serious (34 vs 6/100,000; P< .01) compared with WBD-PLTs. Adverse reactions were higher among PRT-APLTs (572/100,000) and were less often serious (18/100,000) compared with non-PRT-APLTs (35/100,000) although this association was not statistically significant. Among components implicated in adverse reactions, 92% of APLTs were suspended in plasma. Compared with PRT-APLTs stored in PAS, rates were higher among units stored in plasma (760 vs 525/100,000). Most serious reactions (75%) were allergic. No transfusion-transmitted infections were reported among PRT-APLTs. APLTs were associated with a 6-fold and 2-fold higher serious adverse reaction risks compared with WBD-PLTs and PRT-APLTs, respectively. These findings demonstrate the importance of monitoring transfusion-related adverse reactions to track the safety of platelet transfusions and quantify the impact of mitigation strategies through national hemovigilance systems.


Assuntos
Remoção de Componentes Sanguíneos , Segurança do Sangue , Remoção de Componentes Sanguíneos/efeitos adversos , Plaquetas , Atenção à Saúde , Humanos , Tecnologia
9.
Nat Microbiol ; 4(8): 1337-1343, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31086311

RESUMO

Bacillus anthracis is a spore-forming, Gram-positive bacterium responsible for anthrax, an acute infection that most significantly affects grazing livestock and wild ungulates, but also poses a threat to human health. The geographic extent of B. anthracis is poorly understood, despite multi-decade research on anthrax epizootic and epidemic dynamics; many countries have limited or inadequate surveillance systems, even within known endemic regions. Here, we compile a global occurrence dataset of human, livestock and wildlife anthrax outbreaks. With these records, we use boosted regression trees to produce a map of the global distribution of B. anthracis as a proxy for anthrax risk. We estimate that 1.83 billion people (95% credible interval (CI): 0.59-4.16 billion) live within regions of anthrax risk, but most of that population faces little occupational exposure. More informatively, a global total of 63.8 million poor livestock keepers (95% CI: 17.5-168.6 million) and 1.1 billion livestock (95% CI: 0.4-2.3 billion) live within vulnerable regions. Human and livestock vulnerability are both concentrated in rural rainfed systems throughout arid and temperate land across Eurasia, Africa and North America. We conclude by mapping where anthrax risk could disrupt sensitive conservation efforts for wild ungulates that coincide with anthrax-prone landscapes.


Assuntos
Doenças dos Animais/epidemiologia , Antraz/epidemiologia , Antraz/veterinária , Bacillus anthracis/fisiologia , Animais , Animais Selvagens/microbiologia , Antraz/microbiologia , Surtos de Doenças , Microbiologia Ambiental , Geografia , Humanos , Gado/microbiologia , Modelos Biológicos , Saúde Pública , Medição de Risco , Fatores de Risco
10.
Am J Trop Med Hyg ; 96(3): 550-556, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28115677

RESUMO

Anthrax, caused by the environmental bacterium Bacillus anthracis, is an important zoonosis nearly worldwide. In Central Asia, anthrax represents a major veterinary and public health concern. In the Republic of Kyrgyzstan, ongoing anthrax outbreaks have been reported in humans associated with handling infected livestock and contaminated animal by-products such as meat or hides. The current anthrax situation has prompted calls for improved insights into the epidemiology, ecology, and spatial distribution of the disease in Kyrgyzstan to better inform control and surveillance. Disease control for both humans and livestock relies on annual livestock vaccination ahead of outbreaks. Toward this, we used a historic database of livestock anthrax reported from 1932 to 2006 mapped at high resolution to develop an ecological niche model-based prediction of B. anthracis across Kyrgyzstan and identified spatial clusters of livestock anthrax using a cluster morphology statistic. We also defined the seasonality of outbreaks in livestock. Cattle were the most frequently reported across the time period, with the greatest number of cases in late summer months. Our niche models defined four areas as suitable to support pathogen persistence, the plateaus near Talas and Bishkek, the valleys of western Kyrgyzstan along the Fergana Valley, and the low-lying areas along the shore of Lake Isyk-Kul. These areas should be considered "at risk" for livestock anthrax and subsequent human cases. Areas defined by the niche models can be used to prioritize anthrax surveillance and inform efforts to target livestock vaccination campaigns.


Assuntos
Antraz/epidemiologia , Bacillus anthracis/isolamento & purificação , Surtos de Doenças , Gado/microbiologia , Zoonoses/epidemiologia , Animais , Bovinos/microbiologia , Análise por Conglomerados , Equidae/microbiologia , Cavalos/microbiologia , Quirguistão/epidemiologia , Modelos Biológicos , Saúde Pública , Fatores de Risco , Estações do Ano , Carneiro Doméstico/microbiologia , Suínos/microbiologia , Zoonoses/microbiologia
11.
PLoS Negl Trop Dis ; 11(10): e0005885, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29028799

RESUMO

Anthrax is hyper-endemic in West Africa. Despite the effectiveness of livestock vaccines in controlling anthrax, underreporting, logistics, and limited resources makes implementing vaccination campaigns difficult. To better understand the geographic limits of anthrax, elucidate environmental factors related to its occurrence, and identify human and livestock populations at risk, we developed predictive models of the environmental suitability of anthrax in Ghana. We obtained data on the location and date of livestock anthrax from veterinary and outbreak response records in Ghana during 2005-2016, as well as livestock vaccination registers and population estimates of characteristically high-risk groups. To predict the environmental suitability of anthrax, we used an ensemble of random forest (RF) models built using a combination of climatic and environmental factors. From 2005 through the first six months of 2016, there were 67 anthrax outbreaks (851 cases) in livestock; outbreaks showed a seasonal peak during February through April and primarily involved cattle. There was a median of 19,709 vaccine doses [range: 0-175 thousand] administered annually. Results from the RF model suggest a marked ecological divide separating the broad areas of environmental suitability in northern Ghana from the southern part of the country. Increasing alkaline soil pH was associated with a higher probability of anthrax occurrence. We estimated 2.2 (95% CI: 2.0, 2.5) million livestock and 805 (95% CI: 519, 890) thousand low income rural livestock keepers were located in anthrax risk areas. Based on our estimates, the current anthrax vaccination efforts in Ghana cover a fraction of the livestock potentially at risk, thus control efforts should be focused on improving vaccine coverage among high risk groups.


Assuntos
Vacinas contra Antraz , Antraz/epidemiologia , Antraz/veterinária , Surtos de Doenças/veterinária , Gado , Algoritmos , Animais , Antraz/microbiologia , Antraz/prevenção & controle , Bacillus anthracis/isolamento & purificação , Bovinos , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/prevenção & controle , Clima , Simulação por Computador , Meio Ambiente , Métodos Epidemiológicos , Gana/epidemiologia , Humanos , Concentração de Íons de Hidrogênio , Gado/microbiologia , Fatores de Risco , Solo/química , Vacinação
12.
PLoS Negl Trop Dis ; 10(11): e0005105, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27855171

RESUMO

INTRODUCTION: Recurrent cholera outbreaks have been reported in Cameroon since 1971. However, case fatality ratios remain high, and we do not have an optimal understanding of the epidemiology of the disease, due in part to the diversity of Cameroon's climate subzones and a lack of comprehensive data at the health district level. METHODS/FINDINGS: A unique health district level dataset of reported cholera case numbers and related deaths from 2000-2012, obtained from the Ministry of Public Health of Cameroon and World Health Organization (WHO) country office, served as the basis for the analysis. During this time period, 43,474 cholera cases were reported: 1748 were fatal (mean annual case fatality ratio of 7.9%), with an attack rate of 17.9 reported cases per 100,000 inhabitants per year. Outbreaks occurred in three waves during the 13-year time period, with the highest case fatality ratios at the beginning of each wave. Seasonal patterns of illness differed strikingly between climate subzones (Sudano-Sahelian, Tropical Humid, Guinea Equatorial, and Equatorial Monsoon). In the northern Sudano-Sahelian subzone, highest number of cases tended to occur during the rainy season (July-September). The southern Equatorial Monsoon subzone reported cases year-round, with the lowest numbers during peak rainfall (July-September). A spatial clustering analysis identified multiple clusters of high incidence health districts during 2010 and 2011, which were the 2 years with the highest annual attack rates. A spatiotemporal autoregressive Poisson regression model fit to the 2010-2011 data identified significant associations between the risk of transmission and several factors, including the presence of major waterbody or highway, as well as the average daily maximum temperature and the precipitation levels over the preceding two weeks. The direction and/or magnitude of these associations differed between climate subzones, which, in turn, differed from national estimates that ignored subzones differences in climate variables. CONCLUSIONS/SIGNIFICANCE: The epidemiology of cholera in Cameroon differs substantially between climate subzones. Development of an optimal comprehensive country-wide control strategy for cholera requires an understanding of the impact of the natural and built environment on transmission patterns at the local level, particularly in the setting of ongoing climate change.


Assuntos
Cólera/epidemiologia , Clima , Vigilância da População , Análise Espaço-Temporal , Adulto , Camarões/epidemiologia , Cólera/mortalidade , Mudança Climática , Análise por Conglomerados , Surtos de Doenças , Humanos , Incidência , Modelos Estatísticos , Distribuição de Poisson , Chuva , Fatores de Risco , Estações do Ano , Temperatura , Fatores de Tempo
13.
Front Public Health ; 3: 276, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26779471

RESUMO

The ongoing Ebola outbreak in West Africa and the current saiga antelope die off in Kazakhstan each represent very real and difficult to manage public or veterinary health crises. They also illustrate the importance of stable and funded surveillance and sound policy for intervention or disease control. While these two events highlight extreme cases of infectious disease (Ebola) or (possible) environmental exposure (saiga), diseases such as anthrax, brucellosis, tularemia, and plague are all zoonoses that pose risks and present surveillance challenges at the wildlife-livestock-human interfaces. These four diseases are also considered important actors in the threat of biological terror activities and have a long history as legacy biowarfare pathogens. This paper reviews recent studies done cooperatively between American and institutions within nations of the Former Soviet Union (FSU) focused on spatiotemporal, epidemiological, and ecological patterns of these four zoonoses. We examine recent studies and discuss the possible ways in which techniques, including ecological niche modeling, disease risk modeling, and spatiotemporal cluster analysis, can inform disease surveillance, control efforts, and impact policy. Our focus is to posit ways to apply science to disease management policy and actual management or mitigation practices. Across these examples, we illustrate the value of cooperative studies that bring together modern geospatial and epidemiological analyses to improve our understanding of the distribution of pathogens and diseases in livestock, wildlife, and humans. For example, ecological niche modeling can provide national level maps of pathogen distributions for surveillance planning, while space-time models can identify the timing and location of significant outbreak events for defining active control strategies. We advocate for the need to bring the results and the researchers from cooperative studies into the meeting rooms where policy is negotiated and use these results to inform future disease surveillance and control or eradication campaigns.

14.
Parasit Vectors ; 7: 453, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25318562

RESUMO

BACKGROUND: Francisella tularensis, the causative agent of tularemia, is a zoonotic agent that remains across much of the northern hemisphere, where it exists in enzootic cycles. In Ukraine, tularemia has a long history that suggests a need for sustained surveillance in natural foci. To better characterize the host-vector diversity and spatial distribution of tularemia, we analyzed historical data from field collections carried out from 1941 to 2008. FINDINGS: We analyzed the spatial-temporal distribution of bacterial isolates collected from field samples. Isolates were characterized by source and dominant land cover type. To identify environmental persistence and spatial variation in the source of isolation, we used the space-time permutation and multinomial models in SaTScan. A total of 3,086 positive isolates were taken from 1,084 geographic locations. Isolation of F. tularensis was more frequent among arthropods [n = 2,045 (66.3%)] followed by mammals [n = 619 (20.1%)], water [n = 393 (12.7%)], and farm produce [n = 29 (0.94%)], respectively. Four areas of persistent bacterial isolation were identified. Water and farm produce as sources of bacterial isolation were clustered. CONCLUSIONS: Our findings confirm the presence of long-standing natural foci of F. tularensis in Ukraine. Given the history of tularemia as well as its environmental persistence there exists a possibility of (re)emergence in human populations. Heterogeneity in the distribution of tularemia isolate recovery related to land cover type supports the theory of natural nidality and clusters identify areas to target potential sources of the pathogen and improve surveillance.


Assuntos
Francisella tularensis/fisiologia , Tularemia/microbiologia , Animais , Reservatórios de Doenças , Roedores , Especificidade da Espécie , Tularemia/epidemiologia , Ucrânia/epidemiologia , Zoonoses
15.
PLoS Negl Trop Dis ; 7(9): e2388, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040426

RESUMO

BACKGROUND: Anthrax is a soil-borne disease caused by the bacterium Bacillus anthracis and is considered a neglected zoonosis. In the country of Georgia, recent reports have indicated an increase in the incidence of human anthrax. Identifying sub-national areas of increased risk may help direct appropriate public health control measures. The purpose of this study was to evaluate the spatial distribution of human anthrax and identify environmental/anthropogenic factors associated with persistent clusters. METHODS/FINDINGS: A database of human cutaneous anthrax in Georgia during the period 2000-2009 was constructed using a geographic information system (GIS) with case data recorded to the community location. The spatial scan statistic was used to identify persistence of human cutaneous anthrax. Risk factors related to clusters of persistence were modeled using a multivariate logistic regression. Areas of persistence were identified in the southeastern part of the country. Results indicated that the persistence of human cutaneous anthrax showed a strong positive association with soil pH and urban areas. CONCLUSIONS/SIGNIFICANCE: Anthrax represents a persistent threat to public and veterinary health in Georgia. The findings here showed that the local level heterogeneity in the persistence of human cutaneous anthrax necessitates directed interventions to mitigate the disease. High risk areas identified in this study can be targeted for public health control measures such as farmer education and livestock vaccination campaigns.


Assuntos
Antraz/epidemiologia , Bacillus anthracis/isolamento & purificação , Dermatopatias Bacterianas/epidemiologia , Antraz/microbiologia , Análise por Conglomerados , República da Geórgia/epidemiologia , Humanos , Concentração de Íons de Hidrogênio , Incidência , Fatores de Risco , Dermatopatias Bacterianas/microbiologia , Solo/química , Topografia Médica , População Urbana
16.
Prev Vet Med ; 110(3-4): 554-7, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23287714

RESUMO

Brucellosis is the one of most common livestock zoonoses in Georgia, resulting in significant economic losses. Livestock were sampled in three regions of Georgia (Kakheti, Kvemo Kartli, Imereti). Districts that historically reported high numbers of brucellosis related morbidity were selected for serological, bacteriological and molecular surveys. Surveying efforts yielded samples from 10,819 large and small ruminants. In total, 735 serological tests were positive on Rose Bengal and 33 bacterial isolates were recovered and identified as Brucella melitensis or Brucella abortus by microbiology and AMOS-PCR. A Bayesian framework was implemented to estimate the true prevalence of the disease given an imperfect diagnostic test. Regional posterior median true prevalence estimates ranged from 2.7% (95% CI: 1.4, 7.2) in Kvemo Kartli, 0.8% (95% CI: 0.0, 3.6) in Kakheti, to an estimate of 0.6% (95% CI: 0.0, 2.9) in Imereti. Accurate and efficient surveillance of brucellosis is not only of economic value, but also informs efforts to reduce the disease impact on the human population.


Assuntos
Brucella abortus/isolamento & purificação , Brucella melitensis/isolamento & purificação , Brucelose Bovina/epidemiologia , Brucelose/epidemiologia , Doenças das Cabras/epidemiologia , Doenças dos Ovinos/epidemiologia , Animais , Anticorpos Antibacterianos/sangue , Teorema de Bayes , Brucella abortus/classificação , Brucella abortus/imunologia , Brucella melitensis/classificação , Brucella melitensis/imunologia , Brucelose/imunologia , Brucelose/microbiologia , Brucelose Bovina/imunologia , Brucelose Bovina/microbiologia , Bovinos , Feminino , República da Geórgia/epidemiologia , Doenças das Cabras/microbiologia , Cabras , Masculino , Leite/microbiologia , Reação em Cadeia da Polimerase/veterinária , Prevalência , Rosa Bengala/química , Estudos Soroepidemiológicos , Ovinos , Doenças dos Ovinos/microbiologia
17.
Geospat Health ; 7(1): 111-26, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23242686

RESUMO

We compared a local clustering and a cluster morphology statistic using anthrax outbreaks in large (cattle) and small (sheep and goats) domestic ruminants across Kazakhstan. The Getis-Ord (Gi*) statistic and a multidirectional optimal ecotope algorithm (AMOEBA) were compared using 1st, 2nd and 3rd order Rook contiguity matrices. Multivariate statistical tests were used to evaluate the environmental signatures between clusters and non-clusters from the AMOEBA and Gi* tests. A logistic regression was used to define a risk surface for anthrax outbreaks and to compare agreement between clustering methodologies. Tests revealed differences in the spatial distribution of clusters as well as the total number of clusters in large ruminants for AMOEBA (n = 149) and for small ruminants (n = 9). In contrast, Gi* revealed fewer large ruminant clusters (n = 122) and more small ruminant clusters (n = 61). Significant environmental differences were found between groups using the Kruskall-Wallis and Mann-Whitney U tests. Logistic regression was used to model the presence/absence of anthrax outbreaks and define a risk surface for large ruminants to compare with cluster analyses. The model predicted 32.2% of the landscape as high risk. Approximately 75% of AMOEBA clusters corresponded to predicted high risk, compared with ~64% of Gi* clusters. In general, AMOEBA predicted more irregularly shaped clusters of outbreaks in both livestock groups, while Gi* tended to predict larger, circular clusters. Here we provide an evaluation of both tests and a discussion of the use of each to detect environmental conditions associated with anthrax outbreak clusters in domestic livestock. These findings illustrate important differences in spatial statistical methods for defining local clusters and highlight the importance of selecting appropriate levels of data aggregation.


Assuntos
Antraz/epidemiologia , Gado/microbiologia , Animais , Antraz/veterinária , Bovinos/microbiologia , Análise por Conglomerados , Surtos de Doenças/veterinária , Cabras/microbiologia , Cazaquistão/epidemiologia , Medição de Risco , Ovinos/microbiologia , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA