Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(8): 3442-3448, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35171584

RESUMO

Recently, the formation of the ceramic-ionic liquid composite has attracted huge interest in the scientific community. In this work, we investigated the chemical reactions occurring between NASICON LAGP ceramic electrolyte and ionic liquid pyr13TFSI. This study allowed us to identify the cation exchange reaction pyr13-Li occurring on the LAGP surface, forming a LiTFSI salt that was detected by the nuclear magnetic resonance analysis. In addition, using 6Li foils, we succeeded in demonstrating that both LAGP and LiTFSI:pyr13TFSI participate in the diffusion of Li ions by the formation of an ionic bridge between two species.


Assuntos
Líquidos Iônicos , Cátions , Eletrólitos , Lítio
2.
J Am Chem Soc ; 141(35): 13758-13761, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31429559

RESUMO

A new in situ magic angle spinning (MAS) 7Li nuclear magnetic resonance (NMR) strategy allowing for the observation of a full lithium-ion cell is introduced. Increased spectral resolution is achieved through a novel jelly roll cell design, which allowed these studies to be performed for the first time under MAS conditions (MAS rate 10 kHz). The state of charge, metallic lithium plating and solid-electrolyte interface (SEI) formation was captured for the first charge/discharge cycle of a full electrochemical cell (LiCoO2/graphite). This strategy can be used to monitor both anode and cathode electrodes concurrently, which is valuable for tracking the lithium distribution in a full cell in real time and may also enable identification of causes of capacity loss that are not readily available from bulk electrochemical analyses, or other post-mortem strategies.


Assuntos
Fontes de Energia Elétrica , Técnicas Eletroquímicas , Lítio/química , Eletrólitos/química , Desenho de Equipamento , Espectroscopia de Ressonância Magnética/normas , Padrões de Referência
3.
J Am Chem Soc ; 138(25): 7992-9, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27250238

RESUMO

Accurate modeling of Li-ion batteries performance, particularly during the transient conditions experienced in automotive applications, requires knowledge of electrolyte transport properties (ionic conductivity κ, salt diffusivity D, and lithium ion transference number t(+)) over a wide range of salt concentrations and temperatures. While specific conductivity data can be easily obtained with modern computerized instrumentation, this is not the case for D and t(+). A combination of NMR and MRI techniques was used to solve the problem. The main advantage of such an approach over classical electrochemical methods is its ability to provide spatially resolved details regarding the chemical and dynamic features of charged species in solution, hence the ability to present a more accurate characterization of processes in an electrolyte under operational conditions. We demonstrate herein data on ion transport properties (D and t(+)) of concentrated LiPF6 solutions in a binary ethylene carbonate (EC)-dimethyl carbonate (DMC) 1:1 v/v solvent mixture, obtained by the proposed technique. The buildup of steady-state (time-invariant) ion concentration profiles during galvanostatic experiments with graphite-lithium metal cells containing the electrolyte was monitored by pure phase-encoding single point imaging MRI. We then derived the salt diffusivity and Li(+) transference number over the salt concentration range 0.78-1.27 M from a pseudo-3D combined PFG-NMR and MRI technique. The results obtained with our novel methodology agree with those obtained by electrochemical methods, but in contrast to them, the concentration dependences of salt diffusivity and Li(+) transference number were obtained simultaneously within the single in situ experiment.

4.
J Phys Chem B ; 119(37): 12238-48, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26247105

RESUMO

We used NMR imaging (MRI) combined with data analysis based on inverse modeling of the mass transport problem to determine ionic diffusion coefficients and transference numbers in electrolyte solutions of interest for Li-ion batteries. Sensitivity analyses have shown that accurate estimates of these parameters (as a function of concentration) are critical to the reliability of the predictions provided by models of porous electrodes. The inverse modeling (IM) solution was generated with an extension of the Planck-Nernst model for the transport of ionic species in electrolyte solutions. Concentration-dependent diffusion coefficients and transference numbers were derived using concentration profiles obtained from in situ (19)F MRI measurements. Material properties were reconstructed under minimal assumptions using methods of variational optimization to minimize the least-squares deviation between experimental and simulated concentration values with uncertainty of the reconstructions quantified using a Monte Carlo analysis. The diffusion coefficients obtained by pulsed field gradient NMR (PFG-NMR) fall within the 95% confidence bounds for the diffusion coefficient values obtained by the MRI+IM method. The MRI+IM method also yields the concentration dependence of the Li(+) transference number in agreement with trends obtained by electrochemical methods for similar systems and with predictions of theoretical models for concentrated electrolyte solutions, in marked contrast to the salt concentration dependence of transport numbers determined from PFG-NMR data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA