Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Eur J Neurosci ; 53(3): 841-851, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33617053

RESUMO

The hippocampus has been implicated in the processing and storage of aversive memories but the precise mechanisms by which these memories persist in time remain elusive. We have demonstrated that dopaminergic neurotransmission in the dorsal hippocampus regulates the long-term storage of both appetitive and aversive memories at a critical time point known as "late consolidation" (12 hr after the learning experience). This modulation appears to have opposite effects depending on the valence of the stimuli, with hippocampal dopamine release peaking immediately and 13-17 hr after a rewarding experience. Here, we determined the release pattern of hippocampal dopamine following an aversive experience, in order to better understand this opposite modulation process. We observed significant increases in dopamine levels at several times (6-8, 11-12, and 15 hr) after subjecting rats to a conditioned place aversion (CPA) task with the aversive agent lithium chloride (LiCl). Early pharmacological blockade of hippocampal DA receptors impaired CPA memory consolidation. In addition and consistent with previous findings showing that late post-training infusions of dopaminergic agents into the hippocampus modulate the long-term storage of aversive memories, we found that the photostimulation of dopaminergic VTA fibers in the dorsal hippocampus 11-12 hr after CPA training was enough to transform a short-lasting long-term memory into a long-lasting one. The fact that the persistence of an aversive memory can still be affected several hours after the learning experience opens new avenues to develop behavioral and pharmacological strategies for the treatment of a variety of mental disorders.


Assuntos
Dopamina , Consolidação da Memória , Animais , Aprendizagem da Esquiva , Hipocampo , Memória , Ratos , Transmissão Sináptica
2.
Neurobiol Learn Mem ; 116: 172-80, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25452086

RESUMO

The role of the hippocampus in memory supporting associative learning between contexts and unconditioned stimuli is well documented. Hippocampal dopamine neurotransmission modulates synaptic plasticity and memory processing of fear-motivated and spatial learning tasks. Much less is known about the involvement of the hippocampus and its D1/D5 dopamine receptors in the acquisition, consolidation and expression of memories for drug-associated experiences, more particularly, in the processing of single pairing cocaine conditioned place preference (CPP) training. To determine the temporal dynamics of cocaine CPP memory formation, we trained rats in a one-pairing CPP paradigm and tested them at different time intervals after conditioning. The cocaine-associated memory lasted 24 h but not 72 h. Then, we bilaterally infused the dorsal hippocampus with the GABA A receptor agonist muscimol or the D1/D5 dopamine receptor antagonist SCH 23390 at different stages to evaluate the mechanisms involved in the acquisition, consolidation or expression of cocaine CPP memory. Blockade of D1/D5 dopamine receptors at the moment of training impaired the acquisition of cocaine CPP memories, without having any effect when administered immediately or 12 h after training. The expression of cocaine CPP memory was also affected by the administration of SCH 23390 at the moment of the test. Conversely, muscimol impaired the consolidation of cocaine CPP memory only when administered 12 h post conditioning. These findings suggests that dopaminergic inputs to the dorsal hippocampus are required for the acquisition and expression of one trial cocaine-associated memory while neural activity of this structure is required for the late consolidation of these types of memories.


Assuntos
Cocaína/farmacologia , Hipocampo/metabolismo , Memória/fisiologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D5/metabolismo , Animais , Aprendizagem por Associação/efeitos dos fármacos , Aprendizagem por Associação/fisiologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Hipocampo/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
3.
Hippocampus ; 23(4): 295-302, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23355414

RESUMO

The retrosplenial cortex (RSC) is involved in a range of cognitive functions. However, its precise involvement in memory processing is unknown. Pharmacological and behavioral experiments demonstrate that protein synthesis and c-Fos expression in the anterior part of RSC (aRSC) are necessary late after training to maintain for many days a fear-motivated memory. Long-lasting memory storage is regulated by D1/D5 dopamine receptors in aRSC and depends on the functional interplay between dorsal hippocampus and aRSC. These results suggest that the RSC recapitulates some of the molecular events that occur in the hippocampus to maintain memory trace over time.


Assuntos
Córtex Cerebral/fisiologia , Memória de Longo Prazo/fisiologia , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Análise de Variância , Animais , Anisomicina/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Benzazepinas/farmacologia , Córtex Cerebral/efeitos dos fármacos , Dopaminérgicos/farmacologia , Eletrochoque/efeitos adversos , Emetina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Memória de Longo Prazo/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo
4.
Neurobiol Learn Mem ; 103: 19-25, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23608181

RESUMO

The neocortex is thought to be a distributed learning system that gradually integrates semantic information into the initial mnemonic representation rapidly formed by the hippocampus after acquisition. Nevertheless, an emerging view suggests that some cortical regions, in particular the medial prefrontal cortex (mPFC), may also have a role during the initial steps of memory consolidation as well as in the recall of recent memories. Here, we show that mPFC plays a critical role during the first few hours of inhibitory avoidance memory consolidation and is necessary for the normal retrieval of both recent and remote memories, supporting the idea that involvement of neocortical areas in memory processing is not restricted to the late post-training consolidation phase.


Assuntos
Aprendizagem da Esquiva/fisiologia , Memória/fisiologia , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Animais , Anisomicina/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Emetina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Memória/efeitos dos fármacos , Muscimol/farmacologia , Rede Nervosa/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Wistar
5.
Nat Protoc ; 16(12): 5616-5633, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34741153

RESUMO

Keeping similar memories distinct from one another is a critical cognitive process without which we would have difficulty functioning in everyday life. Memories are thought to be kept distinct through the computational mechanism of pattern separation, which reduces overlap between similar input patterns to amplify differences among stored representations. At the behavioral level, impaired pattern separation has been shown to contribute to memory deficits seen in neuropsychiatric and neurodegenerative diseases, including Alzheimer's disease, and in normal aging. This protocol describes the use of the spontaneous location recognition (SLR) task in mice and rats to behaviorally assess spatial pattern separation ability. This two-phase spontaneous memory task assesses the extent to which animals can discriminate and remember object locations presented during the encoding phase. Using three configurations of the task, the similarity of the to-be-remembered locations can be parametrically manipulated by altering the spatial positions of objects-dissimilar, similar or extra similar-to vary the load on pattern separation. Unlike other pattern separation tasks, SLR varies the load on pattern separation during encoding, when pattern separation is thought to occur. Furthermore, SLR can be used in standard rodent behavioral facilities with basic expertise in rodent handling. The entire protocol takes ~20 d from habituation to testing of the animals on all three task configurations. By incorporating breaks between testing, and varying the objects used as landmarks, animals can be tested repeatedly, increasing experimental power by allowing for within-subjects manipulations.


Assuntos
Envelhecimento/fisiologia , Testes Neuropsicológicos , Reconhecimento Visual de Modelos/fisiologia , Reconhecimento Psicológico/fisiologia , Percepção Espacial/fisiologia , Navegação Espacial/fisiologia , Bem-Estar do Animal/ética , Animais , Feminino , Masculino , Rememoração Mental/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
6.
Cannabis Cannabinoid Res ; 2(1): 8-20, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861501

RESUMO

Introduction: The GPR55 receptor has been identified as an atypical cannabinoid receptor and is implicated in various physiological processes. However, its functional role in the central nervous system is not currently understood. The presence of GPR55 receptor in neural regions such as the ventral hippocampus (vHipp), which is critical for cognition, recognition memory, and affective processing, led us to hypothesize that intra-vHipp GPR55 transmission may modulate mesolimbic activity states and related behavioral phenomena. The vHipp is involved in contextual memory and affective regulation through functional interactions with the mesolimbic dopamine system. Materials and Methods: Using a combination of in vivo electrophysiology and behavioral pharmacological assays in rats, we tested whether intra-vHipp activation of GPR55 receptor transmission with the fatty acid amide, palmitoylethanolamide (PEA), a lipid neuromodulator with agonist actions at the GPR55 receptor, may modulate mesolimbic dopaminergic activity states. We further examined the potential effects of intra-vHipp PEA in affective, cognitive and contextual memory tasks. Discussion: We report that intra-vHipp PEA produces a hyper-dopaminergic state in the mesolimbic system characterized by increased firing and bursting activity of ventral tegmental area dopaminergic neuron populations. Furthermore, while PEA-induced activation of GPR55 transmission had no effects on opiate-related reward-related memory formation, we observed strong disruptions in social interaction and recognition memory, spatial location memory, and context-independent associative fear memory formation. Finally, the effects of intra-vHipp PEA were blocked by a selective GPR55 receptor antagonist, CID160 and were dependent upon NMDA receptor transmission, directly in the vHipp. Conclusions: The present results add to a growing body of evidence demonstrating important functional roles for GPR55 signaling in cannabinoid-related neuronal and behavioral phenomena and underscore the potential for GPR55 signaling in the mediation of cannabinoid-related effects independently of the CB1/CB2 receptor systems.

7.
Front Behav Neurosci ; 11: 209, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163081

RESUMO

It is well established that neurons of the mammalian medial prefrontal cortex (mPFC) modulate different behavioral outputs, including several memory types. This behavioral modulation is, at least in part, under the control of the D1-like Dopamine (DA) receptor (D1/5R) which comprises D1 and D5-specific subtypes (D1R and D5R, respectively). Here, combining a set of behavioral assays with pharmacology, we determined whether the activation of D1/5R in the mPFC during almost neutral or weak negative-valence experiences induces aversive behaviors. The intra mPFC bilateral infusion of the D1/5R agonist SKF 38393 (6.25 µg/side) immediately after exposing rats to the white compartment of a place conditioning apparatus promotes a incubated-like aversive memory when tested 7 days thereafter, but it was not seen 24 h after conditioning. No signs of fear or changes in the anxiety state were observed after the exposure to the white compartment. This aversive response is observed only when the experience paired with the mPFC D1/5R activation has a context component involved. By using specific agonists for D1R or D5R subtypes we suggest that D5R mediate the induction of the aversive behavior. No aversive effects were observed when the D1/5R agonist was infused into the dorsal hippocampus (HP), the nucleus accumbens (NAcc) or the basolateral amygdala (BLA) of rats exposed to the white compartment. Taken together, our present findings endorse the idea that activation of mPFC D1/5R is sufficient to induce incubated-like aversive memories after exposing rats to an apparent neutral or weak negative-valence environment and that mPFC might be considered a key brain region involved in providing adaptive emotional behaviors in response to an ever-changing environment.

8.
Sci Rep ; 7(1): 11420, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900286

RESUMO

Chronic adolescent marijuana use has been linked to the later development of psychiatric diseases such as schizophrenia. GABAergic hypofunction in the prefrontal cortex (PFC) is a cardinal pathological feature of schizophrenia and may be a mechanism by which the PFC loses its ability to regulate sub-cortical dopamine (DA) resulting in schizophrenia-like neuropsychopathology. In the present study, we exposed adolescent rats to Δ-9-tetra-hydrocannabinol (THC), the psychoactive component in marijuana. At adulthood, we characterized the functionality of PFC GABAergic neurotransmission and its regulation of sub-cortical DA function using molecular, behavioral and in-vivo electrophysiological analyses. Our findings revealed a persistent attenuation of PFC GABAergic function combined with a hyperactive neuronal state in PFC neurons and associated disruptions in cortical gamma oscillatory activity. These PFC abnormalities were accompanied by hyperactive DAergic neuronal activity in the ventral tegmental area (VTA) and behavioral and cognitive abnormalities similar to those observed in psychiatric disorders. Remarkably, these neuronal and behavioral effects were reversed by pharmacological activation of GABAA receptors in the PFC. Together, these results identify a mechanistic link between dysregulated frontal cortical GABAergic inhibition and sub-cortical DAergic dysregulation, characteristic of well-established neuropsychiatric endophenotypes.


Assuntos
Dopamina/metabolismo , Dronabinol/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiopatologia , Psicotrópicos/farmacologia , Ácido gama-Aminobutírico/metabolismo , Animais , Biomarcadores , Ondas Encefálicas/efeitos dos fármacos , Cognição , Glutamato Descarboxilase/metabolismo , Memória/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Ratos , Receptores de GABA-A/metabolismo , Esquizofrenia/etiologia , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Psicologia do Esquizofrênico
9.
Biol Psychiatry ; 80(3): 216-25, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-26681496

RESUMO

BACKGROUND: Cannabinoid receptor transmission strongly influences emotional processing, and disturbances in cannabinoid signaling are associated with various neuropsychiatric disorders. The mammalian ventral hippocampus (vHipp) is a critical neural region controlling mesolimbic activity via glutamatergic projections to the nucleus accumbens. Furthermore, vHipp abnormalities are linked to schizophrenia-related psychopathology. Nevertheless, the mechanisms by which intra-vHipp cannabinoid signaling may modulate mesolimbic activity states and emotional processing are not currently understood. METHODS: Using an integrative combination of in vivo electrophysiological recordings and behavioral pharmacologic assays in rats, we tested whether activation of cannabinoid type 1 receptors (CB1R) in the vHipp may modulate neuronal activity in the shell subregion of the nucleus accumbens (NASh). We next examined how vHipp CB1R signaling may control the salience of rewarding or aversive emotional memory formation and social interaction/recognition behaviors via intra-NASh glutamatergic transmission. RESULTS: We demonstrate for the first time that vHipp CB1R transmission can potently modulate NASh neuronal activity and can differentially control the formation of context-dependent and context-independent forms of rewarding or aversion-related emotional associative memories. In addition, we found that activation of vHipp CB1R transmission strongly disrupts normal social behavior and cognition. Finally, we report that these behavioral effects are dependent upon intra-NASh alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid/N-methyl-D-aspartate receptor transmission. CONCLUSIONS: Together, these findings demonstrate a critical role for hippocampal cannabinoid signaling in the modulation of mesolimbic neuronal activity states and suggest that dysregulation of CB1R transmission in the vHipp→NASh circuit may underlie hippocampal-mediated affective and social behavioral disturbances present in neuropsychiatric disorders.


Assuntos
Aprendizagem da Esquiva , Emoções/fisiologia , Hipocampo/fisiologia , Núcleo Accumbens/citologia , Núcleo Accumbens/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Recompensa , Animais , Benzoxazinas/administração & dosagem , Benzoxazinas/farmacologia , Cognição/fisiologia , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Maleato de Dizocilpina/administração & dosagem , Maleato de Dizocilpina/farmacologia , Hipocampo/efeitos dos fármacos , Masculino , Memória/fisiologia , Microinjeções , Morfolinas/administração & dosagem , Morfolinas/farmacologia , Naftalenos/administração & dosagem , Naftalenos/farmacologia , Neurônios/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Piperidinas/administração & dosagem , Piperidinas/farmacologia , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Quinoxalinas/administração & dosagem , Quinoxalinas/farmacologia , Ratos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptores de AMPA/agonistas , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia , Rimonabanto , Comportamento Social
10.
Neuropsychopharmacology ; 41(12): 2839-2850, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27296152

RESUMO

Emerging evidence suggests that the largest phytochemical component of cannabis, cannabidiol (CBD), may possess pharmacotherapeutic properties in the treatment of neuropsychiatric disorders. CBD has been reported to functionally interact with both the mesolimbic dopamine (DA) and serotonergic (5-HT) receptor systems. However, the underlying mechanisms by which CBD may modulate emotional processing are not currently understood. Using a combination of in vivo electrophysiological recording and fear conditioning in rats, the present study aimed to characterize the behavioral, neuroanatomical, and pharmacological effects of CBD within the mesolimbic pathway, and its possible functional interactions with 5-HT and DAergic transmission. Using targeted microinfusions of CBD into the shell region of the mesolimbic nucleus accumbens (NASh), we report that intra-NASh CBD potently blocks the formation of conditioned freezing behaviors. These effects were challenged with DAergic, cannabinoid CB1 receptor, and serotonergic (5-HT1A) transmission blockade, but only 5-HT1A blockade restored associative conditioned freezing behaviors. In vivo intra-ventral tegmental area (VTA) electrophysiological recordings revealed that behaviorally effective doses of intra-NASh CBD elicited a predominant decrease in spontaneous DAergic neuronal frequency and bursting activity. These neuronal effects were reversed by simultaneous blockade of 5-HT1A receptor transmission. Finally, using a functional contralateral disconnection procedure, we demonstrated that the ability of intra-NASh CBD to block the formation of conditioned freezing behaviors was dependent on intra-VTA GABAergic transmission substrates. Our findings demonstrate a novel NAcVTA circuit responsible for the behavioral and neuronal effects of CBD within the mesolimbic system via functional interactions with serotonergic 5-HT1A receptor signaling.


Assuntos
Canabidiol/farmacologia , Dopamina/metabolismo , Medo/efeitos dos fármacos , Memória/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Núcleo Accumbens/citologia , Serotonina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Área Tegmentar Ventral/citologia , Potenciais de Ação/efeitos dos fármacos , Animais , Condicionamento Psicológico/efeitos dos fármacos , Dopamina/farmacologia , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Eletrochoque , Masculino , Vias Neurais/fisiologia , Neurotransmissores/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Serotonina/farmacologia
11.
Neuropsychopharmacology ; 39(7): 1645-53, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24442095

RESUMO

Cocaine is thought to be addictive because it elevates dopamine levels in the striatum, reinforcing drug-seeking habits. Cocaine also elevates dopamine levels in the hippocampus, a structure involved in contextual conditioning as well as in reward function. Hippocampal dopamine promotes the late phase of consolidation of an aversive step-down avoidance memory. Here, we examined the role of hippocampal dopamine function in the persistence of the conditioned increase in preference for a cocaine-associated compartment. Blocking dorsal hippocampal D1-type receptors (D1Rs) but not D2-type receptors (D2Rs) 12 h after a single training trial extended persistence of the normally short-lived memory; conversely, a general and a specific phospholipase C-coupled D1R agonist (but not a D2R or adenylyl cyclase-coupled D1R agonist) decreased the persistence of the normally long-lived memory established by three-trial training. These effects of D1 agents were opposite to those previously established in a step-down avoidance task, and were here also found to be opposite to those in a lithium chloride-conditioned avoidance task. After returning to normal following cocaine injection, dopamine levels in the dorsal hippocampus were found elevated again at the time when dopamine antagonists and agonists were effective: between 13 and 17 h after cocaine injection. These findings confirm that, long after the making of a cocaine-place association, hippocampal activity modulates memory consolidation for that association via a dopamine-dependent mechanism. They suggest a dynamic role for dorsal hippocampal dopamine in this late-phase memory consolidation and, unexpectedly, differential roles for late consolidation of memories for places that induce approach or withdrawal because of a drug association.


Assuntos
Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Dopamina/toxicidade , Hipocampo/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Animais , Aprendizagem por Associação/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Condicionamento Operante/efeitos dos fármacos , Modelos Animais de Doenças , Dopamina/metabolismo , Dopaminérgicos/farmacologia , Relação Dose-Resposta a Droga , Vias de Administração de Medicamentos , Cloreto de Lítio/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Receptor trkB/metabolismo , Fatores de Tempo
12.
Front Behav Neurosci ; 8: 408, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25506318

RESUMO

Medial prefrontal cortex (mPFC) is essential for initial memory processing and expression but its involvement in persistent memory storage has seldom been studied. Using the hippocampus dependent inhibitory avoidance learning task and the hippocampus-independent conditioned taste aversion paradigm together with specific dopamine receptor agonists and antagonists we found that persistence but not formation of long-term aversive memories requires dopamine D1/D5 receptors activation in mPFC immediately after training and, depending on the task, between 6 and 12 h later. Our results indicate that besides its well-known participation in retrieval and early consolidation, mPFC also modulates the endurance of long-lasting aversive memories regardless of whether formation of the aversive mnemonic trace requires the participation of the hippocampus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA