Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 19(15): 9762-9769, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28265624

RESUMO

The transport of potassium through praseodymium-manganese oxide (PrMnO3; PMO) has been investigated by means of the charge attachment induced transport (CAIT) technique. To this end, potassium ions have been attached to the front side of a 250 nm thick sample of PMO. The majority of the potassium ions become neutralized at the surface of the PMO, while some of the potassium ions diffuse through. Ex situ analysis of the sample by time-of-flight secondary ion mass spectrometry (ToF-SIMS) reveals pronounced concentration profiles of the potassium, which is indicative of diffusion. Two diffusion coefficients have been obtained, namely, the bulk diffusion coefficient and the diffusion coefficient associated with the grain boundaries. The latter conclusion is supported by transmission electron microscopy of thin lamella cut out from the sample, which reveals twin grain boundaries reaching throughout the entire sample as well as model calculations.

2.
Ultramicroscopy ; 184(Pt A): 61-70, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28850867

RESUMO

Non-volatile resistance change under electric stimulation in many metal-oxides is a promising path to next generation memory devices. However, the underlying mechanisms are still not fully understood. In situ transmission electron microscopy experiments provide a powerful tool to elucidate these mechanisms. In this contribution, we demonstrate a TEM lamella geometry for in situ biasing with two fixed electrode contacts ensuring low and stable contact resistances. We use Pr1-xCaxMnO3-δ sandwiched by Pt electrodes as model system. The evolution of manganese valence state during electric stimulation in different environments is mapped by means of electron energy loss spectroscopy with high spatial resolution in STEM. Correlation of Mn valence with local oxygen content is found. In addition to electrically driven switching, beam-induced redox reactions in oxygen environment are observed. This effect might be restricted to thin lamellae. In general, our results support that bulk oxygen electromigration is the relevant mechanism for non-volatile resistive switching in PCMO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA