Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 24(8): 3380-92, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22885737

RESUMO

Diverse stresses such as high salt conditions cause an increase in reactive oxygen species (ROS), necessitating a redox stress response. However, little is known about the signaling pathways that regulate the antioxidant system to counteract oxidative stress. Here, we show that a Glycogen Synthase Kinase3 from Arabidopsis thaliana (ASKα) regulates stress tolerance by activating Glc-6-phosphate dehydrogenase (G6PD), which is essential for maintaining the cellular redox balance. Loss of stress-activated ASKα leads to reduced G6PD activity, elevated levels of ROS, and enhanced sensitivity to salt stress. Conversely, plants overexpressing ASKα have increased G6PD activity and low levels of ROS in response to stress and are more tolerant to salt stress. ASKα stimulates the activity of a specific cytosolic G6PD isoform by phosphorylating the evolutionarily conserved Thr-467, which is implicated in cosubstrate binding. Our results reveal a novel mechanism of G6PD adaptive regulation that is critical for the cellular stress response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Glucosefosfato Desidrogenase/metabolismo , Estresse Oxidativo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sítios de Ligação , Técnicas de Cultura de Células/métodos , Meios de Cultura/metabolismo , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Germinação , Glucosefosfato Desidrogenase/genética , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Oxirredução , Fosforilação , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Espécies Reativas de Oxigênio/metabolismo , Plantas Tolerantes a Sal/enzimologia , Plantas Tolerantes a Sal/genética , Transdução de Sinais , Cloreto de Sódio , Treonina/metabolismo
2.
J Exp Bot ; 63(4): 1593-608, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22291134

RESUMO

Plants regularly face adverse growth conditions, such as drought, salinity, chilling, freezing, and high temperatures. These stresses can delay growth and development, reduce productivity, and, in extreme cases, cause plant death. Plant stress responses are dynamic and involve complex cross-talk between different regulatory levels, including adjustment of metabolism and gene expression for physiological and morphological adaptation. In this review, information about metabolic regulation in response to drought, extreme temperature, and salinity stress is summarized and the signalling events involved in mediating stress-induced metabolic changes are presented.


Assuntos
Plantas/metabolismo , Estresse Fisiológico/fisiologia , Água/metabolismo , Adaptação Fisiológica , Desidratação , Fenômenos Fisiológicos Vegetais , Salinidade , Transdução de Sinais , Cloreto de Sódio , Estresse Fisiológico/genética , Temperatura
3.
Antioxid Redox Signal ; 21(9): 1289-304, 2014 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-24800789

RESUMO

AIMS: High salinity stress impairs plant growth and development. Trehalose metabolism has been implicated in sugar signaling, and enhanced trehalose metabolism can positively regulate abiotic stress tolerance. However, the molecular mechanism(s) of the stress-related trehalose pathway and the role of individual trehalose biosynthetic enzymes for stress tolerance remain unclear. RESULTS: Trehalose-6-phosphate phosphatase (TPP) catalyzes the final step of trehalose metabolism. Investigating the subcellular localization of the Arabidopsis thaliana TPP family members, we identified AtTPPD as a chloroplast-localized enzyme. Plants deficient in AtTPPD were hypersensitive, whereas plants overexpressing AtTPPD were more tolerant to high salinity stress. Elevated stress tolerance of AtTPPD overexpressors correlated with high starch levels and increased accumulation of soluble sugars, suggesting a role for AtTPPD in regulating sugar metabolism under salinity conditions. Biochemical analyses indicate that AtTPPD is a target of post-translational redox regulation and can be reversibly inactivated by oxidizing conditions. Two cysteine residues were identified as the redox-sensitive sites. Structural and mutation analyses suggest that the formation of an intramolecular disulfide bridge regulates AtTPPD activity. INNOVATION: The activity of different AtTPP isoforms, located in the cytosol, nucleus, and chloroplasts, can be redox regulated, suggesting that the trehalose metabolism might relay the redox status of different cellular compartments to regulate diverse biological processes such as stress responses. CONCLUSION: The evolutionary conservation of the two redox regulatory cysteine residues of TPPs in spermatophytes indicates that redox regulation of TPPs might be a common mechanism enabling plants to rapidly adjust trehalose metabolism to the prevailing environmental and developmental conditions.


Assuntos
Cloroplastos/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Estresse Fisiológico , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Cloroplastos/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Cloreto de Sódio/farmacologia
4.
Plant Physiol ; 149(3): 1354-65, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19074626

RESUMO

AtMPB2C is the Arabidopsis (Arabidopsis thaliana) homolog of MPB2C, a microtubule-associated host factor of tobacco mosaic virus movement protein that was been previously identified in Nicotiana tabacum. To analyze the endogenous function of AtMPB2C and its role in viral infections, transgenic Arabidopsis plant lines stably overexpressing green fluorescent protein (GFP)-AtMPB2C were established. The GFP-AtMPB2C fusion protein was detectable in various cell types and organs and localized at microtubules in a punctuate pattern or in filaments. To determine whether overexpression impacted on the cortical microtubular cytoskeleton, GFP-AtMPB2C-overexpressing plants were compared to known microtubular marker lines. In rapidly elongated cell types such as vein cells and root cells, GFP-AtMPB2C overexpression caused highly unordered assemblies of cortical microtubules, a disturbed, snake-like microtubular shape, and star-like crossing points of microtubules. Phenotypically, GFP-AtMPB2C transgenic plants showed retarded growth but were viable and fertile. Seedlings of GFP-AtMPB2C transgenic plants were characterized by clockwise twisted leaves, clustered stomata, and enhanced drought tolerance. GFP-AtMPB2C-overexpressing plants showed increased resistance against oilseed rape mosaic virus, a close relative of tobacco mosaic virus, but not against cucumber mosaic virus when compared to Arabidopsis wild-type plants. These results suggest that AtMPB2C is involved in the alignment of cortical microtubules, the patterning of stomata, and restricting tobamoviral infections.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Estômatos de Plantas/metabolismo , Estômatos de Plantas/virologia , Tobamovirus/patogenicidade , Sequência de Aminoácidos , Arabidopsis/citologia , Proteínas de Arabidopsis/química , Secas , Proteínas de Fluorescência Verde/metabolismo , Proteínas Associadas aos Microtúbulos/química , Microtúbulos/virologia , Dados de Sequência Molecular , Extratos Vegetais/metabolismo , Estômatos de Plantas/citologia , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
5.
PLoS One ; 3(12): e3935, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19081841

RESUMO

BACKGROUND: Abiotic stresses adversely affect plant growth and development. The hormone abscisic acid (ABA) plays a central role in the response and adaptation to environmental constraints. However, apart from the well established role of ABA in regulating gene expression programmes, little is known about its function in plant stress metabolism. PRINCIPAL FINDINGS: Using an integrative multiparallel approach of metabolome and transcriptome analyses, we studied the dynamic response of the model glyophyte Arabidopsis thaliana to ABA and high salt conditions. Our work shows that salt stress induces complex re-adjustment of carbohydrate metabolism and that ABA triggers the initial steps of carbon mobilisation. SIGNIFICANCE: These findings open new perspectives on how high salinity and ABA impact on central carbohydrate metabolism and highlight the power of iterative combinatorial approaches of non-targeted and hypothesis-driven experiments in stress biology.


Assuntos
Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Metabolismo dos Carboidratos/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Salinidade , Cloreto de Sódio/farmacologia , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA