Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nano Lett ; 16(7): 4410-6, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27336595

RESUMO

By combining high-resolution transmission electron microscopy and associated analytical methods with first-principles calculations, we study the behavior of layered tin dichalcogenides under electron beam irradiation. We demonstrate that the controllable removal of chalcogen atoms due to electron irradiation, at both room and elevated temperatures, gives rise to transformations in the atomic structure of Sn-S and Sn-Se systems so that new phases with different properties can be induced. In particular, rhombohedral layered SnS2 and SnSe2 can be transformed via electron beam induced loss of chalcogen atoms into highly anisotropic orthorhombic layered SnS and SnSe. A striking dependence of the layer orientation of the resulting SnS-parallel to the layers of ultrathin SnS2 starting material, but slanted for transformations of thicker few-layer SnS2-is rationalized by a transformation pathway in which vacancies group into ordered S-vacancy lines, which convert via a Sn2S3 intermediate to SnS. Absence of a stable Sn2Se3 intermediate precludes this pathway for the selenides, hence SnSe2 always transforms into basal plane oriented SnSe. Our results provide microscopic insights into the transformation mechanism and show how irradiation can be used to tune the properties of layered tin chalcogenides for applications in electronics, catalysis, or energy storage.

2.
Phys Rev Lett ; 108(23): 235502, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-23003970

RESUMO

Although the precise microscopic knowledge of van der Waals interactions is crucial for understanding bonding in weakly bonded layered compounds, very little quantitative information on the strength of interlayer interaction in these materials is available, either from experiments or simulations. Here, using many-body perturbation and advanced density-functional theory techniques, we calculate the interlayer binding and exfoliation energies for a large number of layered compounds and show that, independent of the electronic structure of the material, the energies for most systems are around 20 meV/Å2. This universality explains the successful exfoliation of a wide class of layered materials to produce two-dimensional systems, and furthers our understanding the properties of layered compounds in general.

3.
Phys Rev Lett ; 106(10): 105505, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21469806

RESUMO

While crystalline two-dimensional materials have become an experimental reality during the past few years, an amorphous 2D material has not been reported before. Here, using electron irradiation we create an sp2-hybridized one-atom-thick flat carbon membrane with a random arrangement of polygons, including four-membered carbon rings. We show how the transformation occurs step by step by nucleation and growth of low-energy multivacancy structures constructed of rotated hexagons and other polygons. Our observations, along with first-principles calculations, provide new insights to the bonding behavior of carbon and dynamics of defects in graphene. The created domains possess a band gap, which may open new possibilities for engineering graphene-based electronic devices.

4.
Nanotechnology ; 22(17): 175306, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21411912

RESUMO

Using atomistic computer simulations, we study how ion irradiation can be used to alter the morphology of a graphene monolayer, by introducing defects of specific type, and to cut graphene sheets. Based on the results of our analytical potential molecular dynamics simulations, a kinetic Monte Carlo code is developed for modeling morphological changes in a graphene monolayer under irradiation at macroscopic time scales. Impacts of He, Ne, Ar, Kr, Xe, and Ga ions with kinetic energies ranging from tens of eV to 10 MeV and angles of incidence between 0° and 88° are studied. Our results provide microscopic insights into the response of graphene to ion irradiation and can directly be used for the optimization of graphene cutting and patterning with focused ion beams.

5.
Sci Adv ; 7(8)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33597249

RESUMO

Luminescent centers in the two-dimensional material hexagonal boron nitride have the potential to enable quantum applications at room temperature. To be used for applications, it is crucial to generate these centers in a controlled manner and to identify their microscopic nature. Here, we present a method inspired by irradiation engineering with oxygen atoms. We systematically explore the influence of the kinetic energy and the irradiation fluence on the generation of luminescent centers. We find modifications of their density for both parameters, while a fivefold enhancement is observed with increasing fluence. Molecular dynamics simulations clarify the generation mechanism of these centers and their microscopic nature. We infer that VNCB and [Formula: see text] are the most likely centers formed. Ab initio calculations of their optical properties show excellent agreement with our experiments. Our methodology generates quantum emitters in a controlled manner and provides insights into their microscopic nature.

6.
Nanoscale ; 10(30): 14499-14509, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30024005

RESUMO

The morphology and electronic properties of single and few-layer graphene films nanostructured by the impact of heavy high-energy ions have been studied. It is found that ion irradiation leads to the formation of nano-sized pores, or antidots, with sizes ranging from 20 to 60 nm, in the upper one or two layers. The sizes of the pores proved to be roughly independent of the energy of the ions, whereas the areal density of the pores increased with the ion dose. With increasing ion energy (>70 MeV), a profound reduction in the concentration of structural defects (by a factor of 2-5), relatively high mobility values of charge carriers (700-1200 cm2 V-1 s-1) and a transport band gap of about 50 meV were observed in the nanostructured films. The experimental data were rationalized through atomistic simulations of ion impact onto few-layer graphene structures with a thickness matching the experimental samples. We showed that even a single Xe atom with energy in the experimental range produces a considerable amount of damage in the graphene lattice, whereas high dose ion irradiation allows one to propose a high probability of consecutive impacts of several ions onto an area already amorphized by the previous ions, which increases the average radius of the pore to match the experimental results. We also found that the formation of "welded" sheets due to interlayer covalent bonds at the edges and, hence, defect-free antidot arrays is likely at high ion energies (above 70 MeV).

7.
Nanoscale ; 9(31): 11027-11034, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28660978

RESUMO

Two-dimensional transition metal dichalcogenides (TMDCs) exhibit excellent optoelectronic properties. However, the large band gaps in many semiconducting TMDCs make optical absorption in the near-infrared (NIR) wavelength regime impossible, which prevents applications of these materials in optical communications. In this work, we demonstrate that Ar+ ion irradiation is a powerful post-synthesis technique to tailor the optical properties of the semiconducting tungsten disulfide (WS2) by creating S-vacancies and thus controlling material stoichiometry. First-principles calculations reveal that the S-vacancies give rise to deep states in the band gap, which determine the NIR optical absorption of the WS2 monolayer. As the density of the S-vacancies increases, the enhanced NIR linear and saturable absorption of WS2 is observed, which is explained by the results of first-principles calculations. We further demonstrate that by using the irradiated WS2 as a saturable absorber in a waveguide system, the passively Q-switched laser operations can be optimized, thus opening new avenues for tailoring the optical response of TMDCs by defect-engineering through ion irradiation.

8.
J Phys Condens Matter ; 29(41): 415301, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28718771

RESUMO

The development of spatially homogeneous mixed structures with boron (B), nitrogen (N) and carbon (C) atoms arranged in a honeycomb lattice is highly desirable, as they open the possibility of creating stable two-dimensional materials with tunable band gaps. However, at least in the free-standing form, the mixed BCN system is energetically driven towards phase segregation to graphene and hexagonal BN. It is possible to overcome the segregation when BCN material is grown on a particular metal substrate, for example Ru(0 0 0 1), but the stabilization mechanism is still unknown. With the use of density-functional theory we study the energetics of BN/Ru slabs, with different types of configurations of C substitutional defects introduced to the h-BN overlayer. The results are compared to the energetics of free-standing BCN materials. We found that the substrate facilitates the C substitution process in the h-BN overlayer. Thus, more homogeneous BCN material can be grown, overcoming the segregation into graphene and h-BN. In addition, we investigate the electronic and transport gaps in free-standing BCN structures, and assess their mechanical properties and stability. The band gap in mixed BCN free-standing material depends on the concentration of the constituent elements and ranges from zero in pristine graphene to nearly 5 eV in free-standing h-BN. This makes BCN attractive for application in modern electronics.

9.
Nanoscale ; 8(48): 20080-20089, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27892592

RESUMO

Record high values of Young's modulus and tensile strength of graphene and BN nanoribbons as well as their chemically active edges make them promising candidates for serving as fillers in metal-based composite materials. Herein, using ab initio and analytical potential calculations we carry out a systematic study of the mechanical properties of nanocomposites constructed by reinforcing an Al matrix with BN and graphene nanoribbons. We consider a simple case of uniform distribution of nanoribbons in an Al matrix under the assumption that such configuration will lead to the maximum enhancement of mechanical characteristics. We estimate the bonding energy and the interfacial critical shear stress at the ribbon/metal interface as functions of ribbon width and show that the introduction of nanoribbons into the metal leads to a substantial increase in the mechanical characteristics of the composite material, as strong covalent bonding between the ribbon edges and Al matrix provides efficient load transfer from the metal to the ribbons. Using the obtained data, we apply the rule of mixtures in order to analytically assess the relationship between the composite strength and concentration of nanoribbons. Finally, we study carbon chains, which can be referred to as the ultimately narrow ribbons, and find that they are not the best fillers due to their weak interaction with the Al matrix. Simulations of the electronic transport properties of the composites with graphene nanoribbons and carbyne chains embedded into Al show that the inclusion of the C phase gives rise to deterioration in the current carrying capacity of the material, but the drop is relatively small, so that the composite material can still transmit current well, if required.

10.
Nat Commun ; 4: 2098, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23812011

RESUMO

Dislocations, one of the key entities in materials science, govern the properties of any crystalline material. Thus, understanding their life cycle, from creation to annihilation via motion and interaction with other dislocations, point defects and surfaces, is of fundamental importance. Unfortunately, atomic-scale investigations of dislocation evolution in a bulk object are well beyond the spatial and temporal resolution limits of current characterization techniques. Here we overcome the experimental limits by investigating the two-dimensional graphene in an aberration-corrected transmission electron microscope, exploiting the impinging energetic electrons both to image and stimulate atomic-scale morphological changes in the material. The resulting transformations are followed in situ, atom-by-atom, showing the full life cycle of a dislocation from birth to annihilation. Our experiments, combined with atomistic simulations, reveal the evolution of dislocations in two-dimensional systems to be governed by markedly long-ranging out-of-plane buckling.

11.
Nat Commun ; 4: 2010, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23760522

RESUMO

Control of magnetism by applied voltage is desirable for spintronics applications. Finding a suitable material remains an elusive goal, with only a few candidates found so far. Graphene is one of them and attracts interest because of its weak spin-orbit interaction, the ability to control electronic properties by the electric field effect and the possibility to introduce paramagnetic centres such as vacancies and adatoms. Here we show that the magnetism of adatoms in graphene is itinerant and can be controlled by doping, so that magnetic moments are switched on and off. The much-discussed vacancy magnetism is found to have a dual origin, with two approximately equal contributions; one from itinerant magnetism and the other from dangling bonds. Our work suggests that graphene's spin transport can be controlled by the field effect, similar to its electronic and optical properties, and that spin diffusion can be significantly enhanced above a certain carrier density.

12.
J Phys Condens Matter ; 24(42): 424218, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23032078

RESUMO

We apply a range of density-functional-theory-based methods capable of describing van der Waals interactions with weakly bonded layered solids in order to investigate their accuracy for extended systems. The methods under investigation are the local-density approximation, semi-empirical force fields, non-local van der Waals density functionals and the random-phase approximation. We investigate the equilibrium geometries, elastic constants and binding energies of a large and diverse set of compounds and arrive at conclusions about the reliability of the different methods. The study also points to some directions of further development for the non-local van der Waals density functionals.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Compostos Inorgânicos/química , Modelos Químicos , Teoria Quântica , Simulação por Computador , Elasticidade , Termodinâmica
13.
Phys Rev Lett ; 102(12): 126807, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19392310

RESUMO

We present a density-functional-theory study of transition-metal atoms (Sc-Zn, Pt, and Au) embedded in single and double vacancies (SV and DV) in a graphene sheet. We show that for most metals, the bonding is strong and the metal-vacancy complexes exhibit interesting magnetic behavior. In particular, an Fe atom on a SV is not magnetic, while the Fe@DV complex has a high magnetic moment. Surprisingly, Au and Cu atoms at SV are magnetic. Both bond strengths and magnetic moments can be understood within a simple local-orbital picture, involving carbon sp(2) hybrids and the metal spd orbitals. We further calculate the barriers for impurity-atom migration, and they agree well with available experimental data. We discuss the experimental realization of such systems in the context of spintronics and nanocatalysis.

14.
Nat Mater ; 6(10): 723-33, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17906658

RESUMO

Irradiating solids with energetic particles is usually thought to introduce disorder, normally an undesirable phenomenon. But recent experiments on electron or ion irradiation of various nanostructures demonstrate that it can have beneficial effects and that electron or ion beams may be used to tailor the structure and properties of nanosystems with high precision. Moreover, in many cases irradiation can lead to self-organization or self-assembly in nanostructures. In this review we survey recent advances in the rapidly evolving area of irradiation effects in nanostructured materials, with particular emphasis on carbon systems because of their technological importance and the unique ability of graphitic networks to reconstruct under irradiation. We dwell not only on the physics behind irradiation of nanostructures but also on the technical applicability of irradiation for nanoengineering of carbon and other systems.

15.
Science ; 312(5777): 1199-202, 2006 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-16728637

RESUMO

Closed-shell carbon nanostructures, such as carbon onions, have been shown to act as self-contracting high-pressure cells under electron irradiation. We report that controlled irradiation of multiwalled carbon nanotubes can cause large pressure buildup within the nanotube cores that can plastically deform, extrude, and break solid materials that are encapsulated inside the core. We further showed by atomistic simulations that the internal pressure inside nanotubes can reach values higher than 40 gigapascals. Nanotubes can thus be used as robust nanoscale jigs for extruding and deforming hard nanomaterials and for modifying their properties, as well as templates for the study of individual nanometer-sized crystals under high pressure.

16.
Phys Rev Lett ; 93(21): 215503, 2004 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-15601027

RESUMO

We employ a theoretical model to calculate mechanical characteristics of macroscopic mats and fibers of single-walled carbon nanotubes. We further investigate irradiation-induced covalent bonds between nanotubes and their effects on the tensile strength of nanotube mats and fibers. We show that the stiffness and strength of the mats can be increased at least by an order of magnitude, and thus small-dose irradiation with energetic particles is a promising tool for making macroscopic nanotube materials with excellent mechanical characteristics.

17.
Phys Rev Lett ; 93(18): 187202, 2004 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-15525202

RESUMO

Recent experiments indicate that proton irradiation triggers ferromagnetism in originally nonmagnetic graphite samples while He ion bombardment has a much smaller effect. To understand the origin of irradiation-induced magnetism, we have performed spin-polarized density functional theory calculations of the magnetic properties of the defects which are most likely to appear under irradiation vacancies and vacancy-hydrogen complexes. Both defects are magnetic, but as for the latter we find that H adsorption on one of the vacancy dangling bonds gives rise to a magnetic moment double that of the naked vacancy. We show that for small irradiation doses vacancy-hydrogen complexes result in a macroscopic magnetic signal which agrees well with the experimental values.

18.
Phys Rev Lett ; 99(17): 179703; author reply 179704, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17995379
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA