Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(5): 2763-2771, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31950826

RESUMO

Pollutant levels in polar regions are gaining progressively more attention from the scientific community. This is especially so for pollutants that persist in the environment and can reach polar latitudes via a wide range of routes, such as some persistent organic pollutants (POPs). In this study, samples of Antarctic marine benthic organisms were analyzed for legacy and emerging POPs (polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides) to comprehensively assess their current POP concentrations and infer the potential sources of the pollutants. Specimens of five benthic invertebrate species were collected at two distinct locations near Rothera research station on the Antarctic Peninsula (67°35'8 ̋ S and 68°7'59 ̋ W). Any impact of the nearby Rothera station as a local source of pollution appeared to be negligible. The most abundant chemicals detected were hexachlorobenzene (HCB) and BDE-209. The highest concentrations detected were in limpets and sea urchins, followed by sea stars, ascidians, and sea cucumbers. The relative congener patterns of PCBs and PBDEs were similar in all of the species. Some chemicals (e.g., heptachlor, oxychlordane, and mirex) were detected in the Antarctic invertebrates for the first time. Statistical analyses revealed that the distribution of the POPs was not only driven by the feeding traits of the species but also by the physicochemical properties of the specific compounds.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Clorados , Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Regiões Antárticas , Monitoramento Ambiental , Éteres Difenil Halogenados , Invertebrados
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 206: 177-184, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30099316

RESUMO

Lignocellulosic biomass represents the only renewable carbon resource which is available in sufficient amounts to be considered as an alternative for our fossil-based carbon economy. However, an efficient biochemical conversion of lignocellulosic feedstocks is hindered by the natural recalcitrance of the biomass as a result of a dense network of cellulose, hemicelluloses, and lignin. These polymeric interconnections make a pretreatment of the biomass necessary in order to enhance the susceptibility of the polysaccharides. Here, we report on a detailed analysis of the favourable influence of genetic engineering for two common delignification protocols for lignocellulosic biomass, namely acidic bleaching and soda pulping, on the example of CAD deficient poplar. The altered lignin structure of the transgenic poplar results in a significantly accelerated and more complete lignin removal at lower temperatures and shorter reaction times compared to wildtype poplar. To monitor the induced chemical and structural alterations at the tissue level, confocal Raman spectroscopy imaging, FT-IR spectroscopy, and X-ray diffraction were used.


Assuntos
Oxirredutases do Álcool/deficiência , Lignina/química , Plantas Geneticamente Modificadas/química , Populus/química , Análise Espectral Raman/métodos , Biomassa , Lignina/análise , Proteínas de Plantas , Plantas Geneticamente Modificadas/enzimologia , Populus/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA