RESUMO
In Parkinson's disease (PD) motor symptoms are not observed until loss of 70% of dopaminergic neurons in substantia nigra (SN), preventing early diagnosis. Mitochondrial dysfunction was indicated in neuropathological process already at early PD stages. Aging and oxidative stress, the main factors in PD pathogenesis, cause membrane stiffening, which could influence functioning of membrane-bound oxidative phosphorylation (OxPhos) complexes (Cxs) in mitochondria. In 6-OHDA rat model, medium-sized dopaminergic lesion was used to study mitochondrial membrane viscosity and changes at the level of OxPhos Cxs and their higher assembled states-supercomplexes (SCxs), during the early degeneration processes and after it. We observed loss of dopaminergic phenotype in SN and decreased dopamine level in striatum (STR) before actual death of neurons in SN. Behavioural deficits induced by lesion were reversed despite progressing neurodegeneration. Along with degeneration process in STR, mitochondrial Cx I performance and amount decreased in almost all forms of SCxs. Also, progressing decrease of Cx IV performance in SCxs (I1III2IV3-1, I1IV2-1) in STR was observed during degeneration. In SN, SCxs containing Cx I increased protein amount and a shifted individual Cx I1 into superassembled states. Importantly, mitochondrial membrane viscosity changed in parallel with altered SCxs performance. We show for the first time changes at the level of mitochondrial membrane viscosity influencing SCxs function after dopaminergic system degeneration. It implicates that altered mitochondrial membrane viscosity could play an important role in regulation of mitochondria functioning and pathomechanisms of PD. The data obtained are also discussed in relation to compensatory processes observed.
Assuntos
Membrana Celular/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Oxidopamina/efeitos adversos , Doença de Parkinson Secundária/metabolismo , Animais , Membrana Celular/patologia , Neurônios Dopaminérgicos/patologia , Masculino , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Oxidopamina/farmacologia , Doença de Parkinson Secundária/patologia , Ratos , Ratos WistarRESUMO
ROS (reactive oxygen species) generated by NADPH oxidases play an important role in cellular signal transduction regulating cell proliferation, survival and differentiation. Nox4 (NADPH oxidase 4) induces cellular senescence in human endothelial cells; however, intracellular targets for Nox4 remained elusive. In the present study, we show that Nox4 induces mitochondrial dysfunction in human endothelial cells. Nox4 depletion induced alterations in mitochondrial morphology, stabilized mitochondrial membrane potential and decreased production of H(2)O(2) in mitochondria. High-resolution respirometry in permeabilized cells combined with native PAGE demonstrated that Nox4 specifically inhibits the activity of mitochondrial electron transport chain complex I, and this was associated with a decreased concentration of complex I subunits. These data suggest a new pathway by which sustained Nox4 activity decreases mitochondrial function.
Assuntos
Complexo I de Transporte de Elétrons/antagonistas & inibidores , NADPH Oxidases/química , NADPH Oxidases/fisiologia , Complexo I de Transporte de Elétrons/química , Células Endoteliais/metabolismo , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , NADPH Oxidase 4 , NADPH Oxidases/deficiência , Fosforilação Oxidativa , Consumo de Oxigênio , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/química , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/química , Transdução de Sinais/fisiologiaRESUMO
Cause of Parkinson's disease (PD) is still not understood. Motor symptoms are not observed at early stages of disease due to compensatory processes. Dysfunction of mitochondria was indicated already at preclinical PD. Selective toxin 6-OHDA was applied to kill dopaminergic neurons in substantia nigra and disturb neuronal transmission in striatum. Early phase of active degeneration and later stage, when surviving cells adapted to function normally, were analysed. 2D BN/SDS difference gel electrophoresis (DIGE) of mitochondrial proteome enabled to point out crucial processes involved at both time-points in dopaminergic structures. Marker proteins such as DPYSL2, HSP60, ATP1A3, EAAT2 indicated structural remodelling, cytoskeleton rearrangement, organelle trafficking, axon outgrowth and regeneration. Adaptations in dopaminergic and glutamatergic neurotransmission, recycling of synaptic vesicles, along with enlargement of mitochondria mass were proposed as causative for compensation. Changed expression of carbohydrates metabolism and oxidative phosphorylation proteins were described, including their protein-protein interactions and supercomplex assembly.