Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 21(12): 5028-5035, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34082532

RESUMO

Floquet theory has spawned many exciting possibilities for electronic structure control with light, with enormous potential for future applications. The experimental demonstration in solids, however, remains largely unrealized. In particular, the influence of scattering on the formation of Floquet-Bloch states remains poorly understood. Here we combine time- and angle-resolved photoemission spectroscopy with time-dependent density functional theory and a two-level model with relaxation to investigate the survival of Floquet-Bloch states in the presence of scattering. We find that Floquet-Bloch states will be destroyed if scattering-activated by electronic excitations-prevents the Bloch electrons from following the driving field coherently. The two-level model also shows that Floquet-Bloch states reappear at high field intensities where energy exchange with the driving field dominates over energy dissipation to the bath. Our results clearly indicate the importance of long scattering times combined with strong driving fields for the successful realization of various Floquet phenomena.


Assuntos
Elétrons
2.
Sci Adv ; 6(20): eaay0761, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32426488

RESUMO

We use time- and angle-resolved photoemission spectroscopy (tr-ARPES) to investigate ultrafast charge transfer in an epitaxial heterostructure made of monolayer WS2 and graphene. This heterostructure combines the benefits of a direct-gap semiconductor with strong spin-orbit coupling and strong light-matter interaction with those of a semimetal hosting massless carriers with extremely high mobility and long spin lifetimes. We find that, after photoexcitation at resonance to the A-exciton in WS2, the photoexcited holes rapidly transfer into the graphene layer while the photoexcited electrons remain in the WS2 layer. The resulting charge-separated transient state is found to have a lifetime of ∼1 ps. We attribute our findings to differences in scattering phase space caused by the relative alignment of WS2 and graphene bands as revealed by high-resolution ARPES. In combination with spin-selective optical excitation, the investigated WS2/graphene heterostructure might provide a platform for efficient optical spin injection into graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA