RESUMO
The mammalian kidney is composed of thousands of nephrons that are formed through reiterative induction of a mesenchymal-to-epithelial transformation by a population of nephron progenitor cells. The number of nephrons in human kidneys ranges from several hundred thousand to nearly a million, and low nephron number has been implicated as a risk factor for kidney disease as an adult. Bmp7 is among a small number of growth factors required to support the proliferation and self-renewal of nephron progenitor cells, in a process that will largely determine the final nephron number. Once induced, each nephron begins as a simple tubule that undergoes extensive proliferation and segmental differentiation. Bmp7 is expressed both by nephron progenitor cells and the ureteric bud derivative branches that induce new nephrons. Here, we show that, in mice, Bmp7 expressed by progenitor cells has a major role in determining nephron number; nephron number is reduced to one tenth its normal value in its absence. Postnatally, Bmp7 also drives proliferation of the proximal tubule cells, and these ultimately constitute the largest segment of the nephron. Bmp7 appears to act through Smad 1,5,9(8), p38 and JNK MAP kinase. In the absence of Bmp7, nephrons undergo a hypertrophic process that involves p38. Following a global inactivation of Bmp7, we also see evidence for Bmp7-driven growth of the nephron postnatally. Thus, we identify a role for Bmp7 in supporting the progenitor population and driving expansion of nephrons to produce a mature kidney.
Assuntos
Proteína Morfogenética Óssea 7/metabolismo , Rim , Néfrons , Animais , Diferenciação Celular , Humanos , Túbulos Renais Proximais , Mamíferos , Camundongos , Néfrons/metabolismo , Células-TroncoRESUMO
Epigenetic regulation of gene expression has a crucial role allowing for the self-renewal and differentiation of stem and progenitor populations during organogenesis. The mammalian kidney maintains a population of self-renewing stem cells that differentiate to give rise to thousands of nephrons, which are the functional units that carry out filtration to maintain physiological homeostasis. The polycomb repressive complex 2 (PRC2) epigenetically represses gene expression during development by placing the H3K27me3 mark on histone H3 at promoter and enhancer sites, resulting in gene silencing. To understand the role of PRC2 in nephron differentiation, we conditionally inactivated the Eed gene, which encodes a nonredundant component of the PRC2 complex, in nephron progenitor cells. Resultant kidneys were smaller and showed premature loss of progenitor cells. The progenitors in Eed mutant mice that were induced to differentiate did not develop into properly formed nephrons. Lhx1, normally expressed in the renal vesicle, was overexpressed in kidneys of Eed mutant mice. Thus, PRC2 has a crucial role in suppressing the expression of genes that maintain the progenitor state, allowing nephron differentiation to proceed.
Assuntos
Diferenciação Celular/fisiologia , Epigênese Genética/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Néfrons/embriologia , Complexo Repressor Polycomb 2/biossíntese , Células-Tronco/metabolismo , Animais , Proteínas com Homeodomínio LIM/biossíntese , Proteínas com Homeodomínio LIM/genética , Camundongos , Camundongos Transgênicos , Mutação , Néfrons/citologia , Complexo Repressor Polycomb 2/genética , Células-Tronco/citologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genéticaRESUMO
Ectopic cAMP signaling is pathologic in polycystic kidney disease; however, its spatiotemporal actions are unclear. We characterized the expression of phosphorylated Creb (p-Creb), a target and mediator of cAMP signaling, in developing and cystic kidney models. We also examined tubule-specific effects of cAMP analogs in cystogenesis in embryonic kidney explants. In wild-type mice, p-Creb marked nephron progenitors (NP), early epithelial NP derivatives, ureteric bud, and cortical stroma; p-Creb was present in differentiated thick ascending limb of Henle, collecting duct, and stroma; however, it disappeared in mature NP-derived proximal tubules. In Six2cre;Frs2αFl/Fl mice, a renal cystic model, ectopic p-Creb stained proximal tubule-derived cystic segments that lost the differentiation marker lotus tetragonolobus lectin. Furthermore, lotus tetragonolobus lectin-negative/p-Creb-positive cyst segments (re)-expressed Ncam1, Pax2, and Sox9 markers of immature nephron structures and dedifferentiated proximal tubules after acute kidney injury. These dedifferentiation markers were co-expressed with p-Creb in renal cysts in Itf88 knockout mice subjected to ischemia and Six2cre;Pkd1Fl/Fl mice, other renal cystogenesis models. 8-Br-cAMP addition to wild-type embryonic kidney explants induced proximal tubular cystogenesis and p-Creb expression; these effects were blocked by co-addition of protein kinase A inhibitor. Thus p-Creb/cAMP signaling is appropriate in NP and early nephron derivatives, but disappears in mature proximal tubules. Moreover, ectopic p-Creb expression/cAMP signaling marks dedifferentiated proximal tubular cystic segments. Furthermore, proximal tubules are predisposed to become cystic after cAMP stimulation.
Assuntos
Desdiferenciação Celular/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Doenças Renais Císticas/metabolismo , Túbulos Renais Proximais/metabolismo , Animais , Modelos Animais de Doenças , Doenças Renais Císticas/patologia , Túbulos Renais Proximais/patologia , Camundongos , Camundongos Knockout , FosforilaçãoRESUMO
Development of the metanephric kidney depends on tightly regulated interplay between self-renewal and differentiation of a nephron progenitor cell (NPC) pool. Several key factors required for the survival of NPCs have been identified, including fibroblast growth factor (FGF) signaling and the transcription factor Wilms' tumor suppressor 1 (WT1). Here, we present evidence that WT1 modulates FGF signaling by activating the expression of growth arrest-specific 1 (Gas1), a novel WT1 target gene and novel modulator of FGF signaling. We show that WT1 directly binds to a conserved DNA binding motif within the Gas1 promoter and activates Gas1 mRNA transcription in NPCs. We confirm that WT1 is required for Gas1 expression in kidneys in vivo. Loss of function of GAS1 in vivo results in hypoplastic kidneys with reduced nephron mass due to premature depletion of NPCs. Although kidney development in Gas1 knockout mice progresses normally until E15.5, NPCs show decreased rates of proliferation at this stage and are depleted as of E17.5. Lastly, we show that Gas1 is selectively required for FGF-stimulated AKT signaling in vitro. In summary, our data suggest a model in which WT1 modulates receptor tyrosine kinase signaling in NPCs by directing the expression of Gas1.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Néfrons/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Proteínas WT1/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proliferação de Células , DNA/genética , Ativação Enzimática/efeitos dos fármacos , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Camundongos Knockout , Modelos Animais , Néfrons/anormalidades , Néfrons/embriologia , Néfrons/patologia , Técnicas de Cultura de Órgãos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
The transcription factor Wilms' tumor suppressor 1 (WT1) is key to podocyte development and viability; however, WT1 transcriptional networks in podocytes remain elusive. We provide a comprehensive analysis of the genome-wide WT1 transcriptional network in podocytes in vivo using chromatin immunoprecipitation followed by sequencing (ChIPseq) and RNA sequencing techniques. Our data show a specific role for WT1 in regulating the podocyte-specific transcriptome through binding to both promoters and enhancers of target genes. Furthermore, we inferred a podocyte transcription factor network consisting of WT1, LMX1B, TCF21, Fox-class and TEAD family transcription factors, and MAFB that uses tissue-specific enhancers to control podocyte gene expression. In addition to previously described WT1-dependent target genes, ChIPseq identified novel WT1-dependent signaling systems. These targets included components of the Hippo signaling system, underscoring the power of genome-wide transcriptional-network analyses. Together, our data elucidate a comprehensive gene regulatory network in podocytes suggesting that WT1 gene regulatory function and podocyte cell-type specification can best be understood in the context of transcription factor-regulatory element network interplay.
Assuntos
Regulação da Expressão Gênica , Podócitos , Proteínas Repressoras/genética , Transdução de Sinais/genética , Transcriptoma , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Imunoprecipitação da Cromatina , Fatores de Transcrição Forkhead/genética , Genômica , Via de Sinalização Hippo , Proteínas com Homeodomínio LIM/genética , Fator de Transcrição MafB/genética , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Análise de Sequência de DNA , Análise de Sequência de RNA , Fatores de Transcrição/genética , Proteínas WT1RESUMO
Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder caused by mutations in the Pkd1 or Pkd2 genes, in which large cysts replace normal kidney tissue, leading to end-stage kidney disease. In this study we have utilized a powerful nano-HPLC-mass spectrometric approach to characterize patterns of normal and abnormal N-linked glycosylation of α3 integrin subunit in Pkd1(-/-) cells derived from mouse kidneys. Higher molecular weight glycan structures with a different monosaccharide composition were observed at two sites, namely, Asn-925 and Asn-928 sites in α3 integrin isolated from Pkd1(+/+) cells compared with Pkd1(-/-) cells. In addition, an unusual and unique disialic acid glycan structure was observed solely in Pkd1(-/-) cells. Thus, these studies suggest that abnormal protein glycosylation may have a role on the pathogenesis of cyst formation in ADPKD.
Assuntos
Integrina alfa3/metabolismo , Doenças Renais Policísticas/metabolismo , Polissacarídeos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Imunoprecipitação , Espectrometria de Massas , Camundongos , Camundongos Knockout , Doenças Renais Policísticas/patologia , Polissacarídeos/isolamento & purificação , Ácidos Siálicos/metabolismo , Canais de Cátion TRPP/genéticaRESUMO
MicroRNAs (miRNAs) are small, noncoding regulatory RNAs that act as posttranscriptional repressors by binding to the 3'-untranslated region (3'-UTR) of target genes. They require processing by Dicer, an RNase III enzyme, to become mature regulatory RNAs. Previous work from our laboratory revealed critical roles for miRNAs in nephron progenitors at midgestation (Ho J, Pandey P, Schatton T, Sims-Lucas S, Khalid M, Frank MH, Hartwig S, Kreidberg JA. J Am Soc Nephrol 22: 1053-1063, 2011). To interrogate roles for miRNAs in the early metanephric mesenchyme, which gives rise to nephron progenitors as well as the renal stroma during kidney development, we conditionally ablated Dicer function in this lineage. Despite normal ureteric bud outgrowth and condensation of the metanephric mesenchyme to form nephron progenitors, early loss of miRNAs in the metanephric mesenchyme resulted in severe renal dysgenesis. Nephron progenitors are initially correctly specified in the mutant kidneys, with normal expression of several transcription factors known to be critical in progenitors, including Six2, Pax2, Sall1, and Wt1. However, there is premature loss of the nephron progenitor marker Cited1, marked apoptosis, and increased expression of the proapoptotic protein Bim shortly after the initial inductive events in early kidney development. Subsequently, there is a failure in ureteric bud branching and nephron progenitor differentiation. Taken together, our data demonstrate a previously undetermined requirement for miRNAs during early kidney organogenesis and indicate a crucial role for miRNAs in regulating the survival of this lineage.
Assuntos
RNA Helicases DEAD-box/metabolismo , Células-Tronco Embrionárias/enzimologia , Rim/enzimologia , Mesoderma/enzimologia , Ribonuclease III/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Idade Gestacional , Rim/anormalidades , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mesoderma/anormalidades , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Néfrons/anormalidades , Néfrons/enzimologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Organogênese , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Ribonuclease III/deficiência , Ribonuclease III/genética , Transativadores/genética , Transativadores/metabolismo , Ureter/anormalidades , Ureter/enzimologiaRESUMO
The Wilms' tumor suppressor 1 (WT1) gene encodes a DNA- and RNA-binding protein that plays an essential role in nephron progenitor differentiation during renal development. To identify WT1 target genes that might regulate nephron progenitor differentiation in vivo, we performed chromatin immunoprecipitation (ChIP) coupled to mouse promoter microarray (ChIP-chip) using chromatin prepared from embryonic mouse kidney tissue. We identified 1663 genes bound by WT1, 86% of which contain a previously identified, conserved, high-affinity WT1 binding site. To investigate functional interactions between WT1 and candidate target genes in nephron progenitors, we used a novel, modified WT1 morpholino loss-of-function model in embryonic mouse kidney explants to knock down WT1 expression in nephron progenitors ex vivo. Low doses of WT1 morpholino resulted in reduced WT1 target gene expression specifically in nephron progenitors, whereas high doses of WT1 morpholino arrested kidney explant development and were associated with increased nephron progenitor cell apoptosis, reminiscent of the phenotype observed in Wt1(-/-) embryos. Collectively, our results provide a comprehensive description of endogenous WT1 target genes in nephron progenitor cells in vivo, as well as insights into the transcriptional signaling networks controlled by WT1 that might direct nephron progenitor fate during renal development.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Rim/citologia , Rim/embriologia , Néfrons/citologia , Células-Tronco/fisiologia , Proteínas WT1/metabolismo , Animais , Apoptose/fisiologia , Sequência de Bases , Imunoprecipitação da Cromatina , Bases de Dados Factuais , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Feminino , Hibridização In Situ , Rim/metabolismo , Camundongos , Análise em Microsséries , Néfrons/embriologia , Néfrons/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Gravidez , Células-Tronco/citologia , Técnicas de Cultura de Tecidos , Proteínas WT1/genéticaRESUMO
The discovery of microRNAs (miRNAs) as novel regulators of gene expression has led to a marked change in how gene regulation is viewed, with important implications for development and disease. MiRNAs are endogenous, small, noncoding RNAs that largely repress their target mRNAs post-transcriptionally. The regulation of gene expression by miRNAs represents an evolutionarily conserved mechanism that is broadly applicable to most biological processes. Recent studies have begun to define the role of miRNAs in different cell lineages during kidney development, and to implicate specific miRNAs in developmental and pathophysiological processes in the kidney. This review will focus on novel insights into the role(s) of miRNAs in kidney development, and discuss the implications for pediatric renal disease.
Assuntos
Nefropatias/genética , Rim/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica , Humanos , Rim/embriologiaRESUMO
MicroRNAs (miRNAs) are a group of small, noncoding RNAs that act as novel regulators of gene expression through the post-transcriptional repression of their target mRNAs. miRNAs have been implicated in diverse biologic processes, and it is estimated that up to half of all transcripts are regulated by miRNAs. Recent studies also demonstrate a critical role for miRNAs in renal development, physiology, and pathophysiology. Understanding the function of miRNAs in the kidney may lead to innovative approaches to renal disease.
Assuntos
Regulação da Expressão Gênica/fisiologia , Rim/fisiologia , MicroRNAs/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Rim/embriologia , Rim/fisiopatologia , Nefropatias/fisiopatologia , Transcrição Gênica/fisiologiaRESUMO
The mechanisms of cystogenesis in autosomal dominant polycystic kidney disease (ADPKD) are not fully understood. Hyperactivation of the tyrosine kinase c-Met contributes to cyst formation, but we do not know the downstream mediators. Here, we found that hyperactivated c-Met led to increased NF-κB signaling, which in turn, drove de novo expression of Wnt7a and overexpression of Wnt7b in Pkd1(-/-) mouse kidneys. Hyperactivated Wnt signaling increased expression of the transcription factor Pax2 in the cells lining cysts. Furthermore, blocking Wnt signaling with DKK1 decreased cyst formation in an organ culture model of ADPKD. In summary, these results suggest that the c-Met/NF-κB/Wnt/Pax2 signaling transduction axis may provide pharmacological targets for the treatment of ADPKD.
Assuntos
NF-kappa B/metabolismo , Fator de Transcrição PAX2/metabolismo , Doenças Renais Policísticas/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Wnt/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Doenças Renais Policísticas/etiologia , Gravidez , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Regulação para CimaRESUMO
Pulmonary fibrosis, in particular idiopathic pulmonary fibrosis (IPF), results from aberrant wound healing and scarification. One population of fibroblasts involved in the fibrotic process is thought to originate from lung epithelial cells via epithelial-mesenchymal transition (EMT). Indeed, alveolar epithelial cells (AECs) undergo EMT in vivo during experimental fibrosis and ex vivo in response to TGF-beta1. As the ECM critically regulates AEC responses to TGF-beta1, we explored the role of the prominent epithelial integrin alpha3beta1 in experimental fibrosis by generating mice with lung epithelial cell-specific loss of alpha3 integrin expression. These mice had a normal acute response to bleomycin injury, but they exhibited markedly decreased accumulation of lung myofibroblasts and type I collagen and did not progress to fibrosis. Signaling through beta-catenin has been implicated in EMT; we found that in primary AECs, alpha3 integrin was required for beta-catenin phosphorylation at tyrosine residue 654 (Y654), formation of the pY654-beta-catenin/pSmad2 complex, and initiation of EMT, both in vitro and in vivo during the fibrotic phase following bleomycin injury. Finally, analysis of lung tissue from IPF patients revealed the presence of pY654-beta-catenin/pSmad2 complexes and showed accumulation of pY654-beta-catenin in myofibroblasts. These findings demonstrate epithelial integrin-dependent profibrotic crosstalk between beta-catenin and Smad signaling and support the hypothesis that EMT is an important contributor to pathologic fibrosis.
Assuntos
Células Epiteliais/fisiologia , Fibroblastos/metabolismo , Integrina alfa3beta1/metabolismo , Fibrose Pulmonar , Transdução de Sinais/fisiologia , Proteína Smad2/metabolismo , beta Catenina/metabolismo , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Antibióticos Antineoplásicos/farmacologia , Bleomicina/farmacologia , Células Cultivadas , Células Epiteliais/citologia , Fibroblastos/citologia , Humanos , Integrina alfa3beta1/genética , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Mesoderma/citologia , Mesoderma/fisiologia , Camundongos , Camundongos Transgênicos , Fenótipo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Proteína Smad2/genéticaRESUMO
Agents that target the activity of the mammalian target of rapamycin (mTOR) kinase in humans are associated with proteinuria. However, the mechanisms underlying mTOR activity and signaling within the kidney are poorly understood. In this study, we developed a sensitive immunofluorescence technique for the evaluation of activated pmTOR and its associated signals in situ. While we find that pmTOR is rarely expressed in normal non-renal tissues, we consistently find intense expression in glomeruli within normal mouse and human kidneys. Using double staining, we find that the expression of pmTOR co-localizes with nephrin in podocytes and expression appears minimal within other cell types in the glomerulus. In addition, we found that pmTOR was expressed on occasional renal tubular cells within mouse and human kidney specimens. We also evaluated mTOR signaling in magnetic bead-isolated glomeruli from normal mice and, by Western blot analysis, we confirmed function of the pathway in glomerular cells vs. interstitial cells. Furthermore, we found that the activity of the pathway as well as the expression of VEGF, a target of mTOR-induced signaling, were reduced within glomeruli of mice following treatment with rapamycin. Collectively, these findings demonstrate that the mTOR signaling pathway is constitutively hyperactive within podocytes. We suggest that pmTOR signaling functions to regulate glomerular homeostasis in part via the inducible expression of VEGF.
Assuntos
Glomérulos Renais/enzimologia , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Imunofluorescência , Homeostase , Humanos , Glomérulos Renais/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Podócitos/enzimologia , Transdução de Sinais , Sirolimo/farmacologia , Fator A de Crescimento do Endotélio Vascular/biossínteseRESUMO
Cortical GABAergic interneurons, most of which originate in the ganglionic eminences, take distinct tangential migratory trajectories into the developing cerebral cortex. However, the ligand-receptor systems that modulate the tangential migration of distinct groups of interneurons into the emerging cerebral wall remain unclear. Here, we show that netrin-1, a diffusible guidance cue expressed along the migratory routes traversed by GABAergic interneurons, interacts with alpha3beta1 integrin to promote interneuronal migration. In vivo analysis of interneuron-specific alpha3beta1 integrin, netrin-1-deficient mice (alpha3(lox/-)Dlx5/6-CIE, netrin-1(-/-)) reveals specific deficits in the patterns of interneuronal migration along the top of the developing cortical plate, resulting in aberrant interneuronal positioning throughout the cerebral cortex and hippocampus of conditional alpha3(lox/-)Dlx5/6-CIE, netrin-1(-/-) mice. These results indicate that specific guidance mechanisms, such as netrin-1-alpha3beta1 integrin interactions, modulate distinct routes of interneuronal migration and the consequent positioning of groups of cortical interneurons in the developing cerebral cortex.
Assuntos
Movimento Celular , Córtex Cerebral/crescimento & desenvolvimento , Integrina alfa3beta1/metabolismo , Interneurônios/fisiologia , Fatores de Crescimento Neural/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Movimento Celular/genética , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Interneurônios/metabolismo , Camundongos , Camundongos Knockout , Fatores de Crescimento Neural/genética , Netrina-1 , Proteínas Supressoras de Tumor/genética , Ácido gama-Aminobutírico/metabolismoRESUMO
Understanding the mechanisms that regulate nephron progenitors during kidney development should aid development of therapies for renal failure. MicroRNAs, which modulate gene expression through post-transcriptional repression of specific target mRNAs, contribute to the differentiation of stem cells, but their role in nephrogenesis is incompletely understood. Here, we found that the loss of miRNAs in nephron progenitors results in a premature depletion of this population during kidney development. Increased apoptosis and expression of the pro-apoptotic protein Bim accompanied this depletion. Profiling of miRNA expression during nephrogenesis identified several highly expressed miRNAs (miR-10a, miR-106b, miR-17-5p) in nephron progenitors that are either known or predicted to target Bim. We propose that modulation of apoptosis by miRNAs may determine congenital nephron endowment. Furthermore, our data implicate the pro-apoptotic protein Bim as a miRNA target in nephron progenitors.
Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Rim/embriologia , Rim/fisiologia , Proteínas de Membrana/fisiologia , MicroRNAs/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Células-Tronco/fisiologia , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2 , Diferenciação Celular/fisiologia , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Rim/citologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Modelos Animais , Gravidez , Proteínas Proto-Oncogênicas/genética , Células-Tronco/citologiaRESUMO
Paracrine signaling between podocytes and glomerular endothelial cells through vascular endothelial growth factor A (VEGFA) maintains a functional glomerular filtration barrier. Heparan sulfate proteoglycans (HSPGs), located on the cell surface or in the extracellular matrix, bind signaling molecules such as VEGFA and affect their local concentrations, but whether modulation of these moieties promotes normal crosstalk between podocytes and endothelial cells is unknown. Here, we found that the transcription factor Wilms' Tumor 1 (WT1) modulates VEGFA and FGF2 signaling by increasing the expression of the 6-O-endosulfatases Sulf1 and Sulf2, which remodel the heparan sulfate 6-O-sulfation pattern in the extracellular matrix. Mice deficient in both Sulf1 and Sulf2 developed age-dependent proteinuria as a result of ultrastructural abnormalities in podocytes and endothelial cells, a phenotype similar to that observed in children with WT1 mutations and in Wt1(+/-) mice. These kidney defects associated with a decreased distribution of VEGFA in the glomerular basement membrane and on endothelial cells. Collectively, these data suggest that WT1-dependent sulfatase expression plays a critical role in maintaining the glomerular filtration barrier by modulating the bioavailability of growth factors, thereby promoting normal crosstalk between podocytes and endothelial cells.
Assuntos
Glomérulos Renais/enzimologia , Sulfatases/metabolismo , Sulfotransferases/metabolismo , Proteínas WT1/metabolismo , Animais , Comunicação Celular , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Heterozigoto , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Mutação , Permeabilidade , Regiões Promotoras Genéticas , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Kidney function decreases with age and may soon limit millions of lives as the proportion of the population over 70 years of age increases. Glycogen synthase kinase 3ß (GSK3ß) is involved with metabolism and may have a role in kidney senescence, positioning it as a target for complications from chronic kidney disease. However, different studies suggest GSK3 has contrasting effects. In this issue of the JCI, Fang et al. explored the function of GSK3ß and the interplay with lithium using human tissue and mouse models. Notably, GSK3ß was overexpressed and activated in aging mice, and depleting GSK3ß reduced senescence and glomerular aging. In this Commentary, we explore the similarities and differences between Fang et al. and previous findings by Hurcombe et al. These findings should prompt further study of lithium and other GSK3ß inhibitors as a means of extending glomerular function in individuals with chronic kidney disease.
Assuntos
Quinase 3 da Glicogênio Sintase , Rim , Envelhecimento , Animais , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Glomérulos Renais/metabolismo , CamundongosRESUMO
Glial cell line-derived neurotrophic factor (GDNF) is a heparan sulfate (HS)-binding factor. GDNF is produced by somatic Sertoli cells, where it signals to maintain spermatogonial stem cells (SSCs) and reproduction. Here, we investigate the roles of extracellular HS 6-O-endosulfatases (Sulfs), Sulf1 and Sulf2, in the matrix transmission of GDNF from Sertoli cells to SSCs. Although Sulfs are not required for testis formation, Sulf deficiency leads to the accelerated depletion of SSCs, a testis phenotype similar to that of GDNF+/- mice. Mechanistically, we show that Sulfs are expressed in GDNF-producing Sertoli cells. In addition, reduced Sulf activity profoundly worsens haplo-deficient GDNF phenotypes in our genetic studies. These findings establish a critical role of Sulfs in promoting GDNF signaling and support a model in which Sulfs regulate the bioavailability of GDNF by enzymatically remodeling HS 6-O-desulfation to release GDNF from matrix sequestration. Further, Sertoli cell-specific transcriptional factor Wilm's tumor 1 (WT1) directly activates the transcription of both Sulf1 and Sulf2 genes. Together, our studies not only identify Sulfs as essential regulators of GDNF signaling in the SSC niche, but also as direct downstream targets of WT1, thus establishing a physiological role of WT1 in Sertoli cells.
Assuntos
Células de Sertoli/metabolismo , Espermatogônias , Sulfatases , Sulfotransferases , Animais , Proteínas de Ciclo Celular , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Masculino , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Fatores de Processamento de RNA , Ratos , Transdução de Sinais/fisiologia , Espermatogônias/metabolismo , Nicho de Células-Tronco/metabolismo , Células-Tronco/metabolismo , Sulfatases/genética , Sulfatases/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismoRESUMO
Dystroglycan (DG or DAG1) is considered a critical link between the basement membrane and the cytoskeleton in multiple tissues. DG consists of two subunits, an extracellular α-subunit that binds laminin and other basement membrane components, and a transmembrane ß-subunit. DG-null mouse embryos die during early embryogenesis because DG is required for Reichert's membrane formation. DG also forms an integral part of the dystrophin-glycoprotein complex in muscle. Although no human DG mutations have been reported, multiple forms of muscular dystrophy have been linked to DG glycosylation defects, and targeted deletion of muscle DG causes muscular dystrophy in mice. Moreover, DG is widely distributed in endothelial and epithelial cells, including those in the kidney. There has therefore been significant interest in DG's role in the kidney, especially in podocytes. Previous reports suggested that DG's disturbance in podocytes might cause glomerular filtration barrier abnormalities. To fully understand DG's contribution to nephrogenesis and kidney function, we used a conditional DG allele and a variety of Cre mice to systematically delete DG from podocytes, ureteric bud, metanephric mesenchyme, and then from the whole kidney. Surprisingly, none of these conditional deletions resulted in significant morphological or functional abnormalities in the kidney. Furthermore, DG-deficient podocytes did not show increased susceptibility to injury, and DG-deficient kidneys did not show delayed recovery. Integrins are therefore likely the primary extracellular matrix receptors in renal epithelia.
Assuntos
Injúria Renal Aguda/metabolismo , Distroglicanas/metabolismo , Rim/embriologia , Rim/fisiologia , Injúria Renal Aguda/fisiopatologia , Animais , Distroglicanas/genética , Células Epiteliais/metabolismo , Integrases/genética , Integrases/metabolismo , Integrina alfa3/genética , Integrina alfa3/metabolismo , Glomérulos Renais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Modelos Animais , Podócitos/metabolismoRESUMO
Integrin alpha3beta1 is a major receptor for laminin. The expression levels of laminins-8 and -10 in the basement membrane surrounding blood vessels are known to change during tumor angiogenesis. Although some studies have suggested that certain ligands of alpha3beta1 can affect angiogenesis either positively or negatively, either a direct in vivo role for alpha3beta1 in this process or its mechanism of action in endothelial cells during angiogenesis is still unknown. Because the global genetic ablation of alpha3-integrin results in an early lethal phenotype, we have generated conditional-knockout mice where alpha3 is deleted specifically in endothelial cells (ec-alpha3-/-). Here we show that ec-alpha3-/- mice are viable, fertile, and display enhanced tumor growth, elevated tumor angiogenesis, augmented hypoxia-induced retinal angiogenesis, and increased vascular endothelial growth factor (VEGF)-mediated neovascularization ex vivo and in vivo. Furthermore, our data provide a novel method by which an integrin may regulate angiogenesis. We show that alpha3beta1 is a positive regulator of endothelial-VEGF and that, surprisingly, the VEGF produced by endothelial cells can actually repress VEGF-receptor 2 (Flk-1) expression. These data, therefore, identify directly that endothelial alpha3beta1 negatively regulates pathological angiogenesis and implicate an unexpected role for low levels of endothelial-VEGF as an activator of neovascularization.