Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 585(7823): 107-112, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32728218

RESUMO

Treating patients who have cancer with vaccines that stimulate a targeted immune response is conceptually appealing, but cancer vaccine trials have not been successful in late-stage patients with treatment-refractory tumours1,2. We are testing melanoma FixVac (BNT111)-an intravenously administered liposomal RNA (RNA-LPX) vaccine, which targets four non-mutated, tumour-associated antigens that are prevalent in melanoma-in an ongoing, first-in-human, dose-escalation phase I trial in patients with advanced melanoma (Lipo-MERIT trial, ClinicalTrials.gov identifier NCT02410733). We report here data from an exploratory interim analysis that show that melanoma FixVac, alone or in combination with blockade of the checkpoint inhibitor PD1, mediates durable objective responses in checkpoint-inhibitor (CPI)-experienced patients with unresectable melanoma. Clinical responses are accompanied by the induction of strong CD4+ and CD8+ T cell immunity against the vaccine antigens. The antigen-specific cytotoxic T-cell responses in some responders reach magnitudes typically reported for adoptive T-cell therapy, and are durable. Our findings indicate that RNA-LPX vaccination is a potent immunotherapy in patients with CPI-experienced melanoma, and suggest the general utility of non-mutant shared tumour antigens as targets for cancer vaccination.


Assuntos
Antineoplásicos/uso terapêutico , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Melanoma/imunologia , Melanoma/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , RNA Neoplásico/genética , Linfócitos T/imunologia , Antígenos de Neoplasias/imunologia , Antineoplásicos/farmacologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/efeitos adversos , Terapia Combinada , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Estadiamento de Neoplasias , Linfócitos T/citologia , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia , Vacinação
3.
Nature ; 565(7738): 240-245, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30568303

RESUMO

Patients with glioblastoma currently do not sufficiently benefit from recent breakthroughs in cancer treatment that use checkpoint inhibitors1,2. For treatments using checkpoint inhibitors to be successful, a high mutational load and responses to neoepitopes are thought to be essential3. There is limited intratumoural infiltration of immune cells4 in glioblastoma and these tumours contain only 30-50 non-synonymous mutations5. Exploitation of the full repertoire of tumour antigens-that is, both unmutated antigens and neoepitopes-may offer more effective immunotherapies, especially for tumours with a low mutational load. Here, in the phase I trial GAPVAC-101 of the Glioma Actively Personalized Vaccine Consortium (GAPVAC), we integrated highly individualized vaccinations with both types of tumour antigens into standard care to optimally exploit the limited target space for patients with newly diagnosed glioblastoma. Fifteen patients with glioblastomas positive for human leukocyte antigen (HLA)-A*02:01 or HLA-A*24:02 were treated with a vaccine (APVAC1) derived from a premanufactured library of unmutated antigens followed by treatment with APVAC2, which preferentially targeted neoepitopes. Personalization was based on mutations and analyses of the transcriptomes and immunopeptidomes of the individual tumours. The GAPVAC approach was feasible and vaccines that had poly-ICLC (polyriboinosinic-polyribocytidylic acid-poly-L-lysine carboxymethylcellulose) and granulocyte-macrophage colony-stimulating factor as adjuvants displayed favourable safety and strong immunogenicity. Unmutated APVAC1 antigens elicited sustained responses of central memory CD8+ T cells. APVAC2 induced predominantly CD4+ T cell responses of T helper 1 type against predicted neoepitopes.


Assuntos
Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Glioblastoma/diagnóstico , Glioblastoma/terapia , Medicina de Precisão/métodos , Adulto , Idoso , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Feminino , Glioblastoma/imunologia , Antígenos HLA-A/imunologia , Humanos , Memória Imunológica/imunologia , Masculino , Pessoa de Meia-Idade , Linfócitos T Auxiliares-Indutores/imunologia , Resultado do Tratamento
4.
Nature ; 547(7662): 222-226, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28678784

RESUMO

T cells directed against mutant neo-epitopes drive cancer immunity. However, spontaneous immune recognition of mutations is inefficient. We recently introduced the concept of individualized mutanome vaccines and implemented an RNA-based poly-neo-epitope approach to mobilize immunity against a spectrum of cancer mutations. Here we report the first-in-human application of this concept in melanoma. We set up a process comprising comprehensive identification of individual mutations, computational prediction of neo-epitopes, and design and manufacturing of a vaccine unique for each patient. All patients developed T cell responses against multiple vaccine neo-epitopes at up to high single-digit percentages. Vaccine-induced T cell infiltration and neo-epitope-specific killing of autologous tumour cells were shown in post-vaccination resected metastases from two patients. The cumulative rate of metastatic events was highly significantly reduced after the start of vaccination, resulting in a sustained progression-free survival. Two of the five patients with metastatic disease experienced vaccine-related objective responses. One of these patients had a late relapse owing to outgrowth of ß2-microglobulin-deficient melanoma cells as an acquired resistance mechanism. A third patient developed a complete response to vaccination in combination with PD-1 blockade therapy. Our study demonstrates that individual mutations can be exploited, thereby opening a path to personalized immunotherapy for patients with cancer.


Assuntos
Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Melanoma/imunologia , Melanoma/terapia , Mutação/genética , Medicina de Precisão/métodos , RNA/genética , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antígeno B7-H1/imunologia , Antígenos CD8/imunologia , Vacinas Anticâncer/uso terapêutico , Epitopos/genética , Epitopos/imunologia , Humanos , Imunoterapia/métodos , Melanoma/genética , Metástase Neoplásica , Recidiva Local de Neoplasia/prevenção & controle , Nivolumabe , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T/imunologia , Vacinação , Microglobulina beta-2/deficiência
5.
Cancer Immunol Immunother ; 71(8): 1975-1988, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34971406

RESUMO

Human papilloma virus (HPV) infection is a causative agent for several cancers types (genital, anal and head and neck region). The HPV E6 and E7 proteins are oncogenic drivers and thus are ideal candidates for therapeutic vaccination. We recently reported that a novel ribonucleic acid lipoplex (RNA-LPX)-based HPV16 vaccine, E7 RNA-LPX, mediates regression of mouse HPV16+ tumors and establishes protective T cell memory. An HPV16 E6/E7 RNA-LPX vaccine is currently being investigated in two phase I and II clinical trials in various HPV-driven cancer types; however, it remains a high unmet medical need for treatments for patients with radiosensitive HPV16+ tumors. Therefore, we set out to investigate the therapeutic efficacy of E7 RNA-LPX vaccine combined with standard-of-care local radiotherapy (LRT). We demonstrate that E7 RNA-LPX synergizes with LRT in HPV16+ mouse tumors, with potent therapeutic effects exceeding those of either monotherapy. Mode of action studies revealed that the E7 RNA-LPX vaccine induced high numbers of intratumoral-E7-specific CD8+ T cells, rendering cold tumors immunologically hot, whereas LRT primarily acted as a cytotoxic therapy, reducing tumor mass and intratumor hypoxia by predisposing tumor cells to antigen-specific T cell-mediated killing. Overall, LRT enhanced the effector function of E7 RNA-LPX-primed T cell responses. The therapeutic synergy was dependent on total radiation dose, rather than radiation dose-fractionation. Together, these results show that LRT synergizes with E7 RNA-LPX and enhances its anti-tumor activity against HPV16+ cancer models. This work paves into a new translational therapy for HPV16+ cancer patients.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Animais , Linfócitos T CD8-Positivos , Feminino , Papillomavirus Humano 16/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , RNA , Vacinação
6.
Nature ; 534(7607): 396-401, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27281205

RESUMO

Lymphoid organs, in which antigen presenting cells (APCs) are in close proximity to T cells, are the ideal microenvironment for efficient priming and amplification of T-cell responses. However, the systemic delivery of vaccine antigens into dendritic cells (DCs) is hampered by various technical challenges. Here we show that DCs can be targeted precisely and effectively in vivo using intravenously administered RNA-lipoplexes (RNA-LPX) based on well-known lipid carriers by optimally adjusting net charge, without the need for functionalization of particles with molecular ligands. The LPX protects RNA from extracellular ribonucleases and mediates its efficient uptake and expression of the encoded antigen by DC populations and macrophages in various lymphoid compartments. RNA-LPX triggers interferon-α (IFNα) release by plasmacytoid DCs and macrophages. Consequently, DC maturation in situ and inflammatory immune mechanisms reminiscent of those in the early systemic phase of viral infection are activated. We show that RNA-LPX encoding viral or mutant neo-antigens or endogenous self-antigens induce strong effector and memory T-cell responses, and mediate potent IFNα-dependent rejection of progressive tumours. A phase I dose-escalation trial testing RNA-LPX that encode shared tumour antigens is ongoing. In the first three melanoma patients treated at a low-dose level, IFNα and strong antigen-specific T-cell responses were induced, supporting the identified mode of action and potency. As any polypeptide-based antigen can be encoded as RNA, RNA-LPX represent a universally applicable vaccine class for systemic DC targeting and synchronized induction of both highly potent adaptive as well as type-I-IFN-mediated innate immune mechanisms for cancer immunotherapy.


Assuntos
Antígenos de Neoplasias/imunologia , Antígenos Virais/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Imunoterapia/métodos , Melanoma/imunologia , Melanoma/terapia , RNA/administração & dosagem , Administração Intravenosa , Animais , Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/genética , Antígenos Virais/genética , Autoantígenos/genética , Autoantígenos/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Ensaios Clínicos Fase I como Assunto , Células Dendríticas/citologia , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Feminino , Humanos , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Ativação Linfocitária/imunologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , RNA/genética , Eletricidade Estática , Linfócitos T/citologia , Linfócitos T/imunologia , Receptor 7 Toll-Like/imunologia
7.
Nature ; 520(7549): 692-6, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25901682

RESUMO

Tumour-specific mutations are ideal targets for cancer immunotherapy as they lack expression in healthy tissues and can potentially be recognized as neo-antigens by the mature T-cell repertoire. Their systematic targeting by vaccine approaches, however, has been hampered by the fact that every patient's tumour possesses a unique set of mutations ('the mutanome') that must first be identified. Recently, we proposed a personalized immunotherapy approach to target the full spectrum of a patient's individual tumour-specific mutations. Here we show in three independent murine tumour models that a considerable fraction of non-synonymous cancer mutations is immunogenic and that, unexpectedly, the majority of the immunogenic mutanome is recognized by CD4(+) T cells. Vaccination with such CD4(+) immunogenic mutations confers strong antitumour activity. Encouraged by these findings, we established a process by which mutations identified by exome sequencing could be selected as vaccine targets solely through bioinformatic prioritization on the basis of their expression levels and major histocompatibility complex (MHC) class II-binding capacity for rapid production as synthetic poly-neo-epitope messenger RNA vaccines. We show that vaccination with such polytope mRNA vaccines induces potent tumour control and complete rejection of established aggressively growing tumours in mice. Moreover, we demonstrate that CD4(+) T cell neo-epitope vaccination reshapes the tumour microenvironment and induces cytotoxic T lymphocyte responses against an independent immunodominant antigen in mice, indicating orchestration of antigen spread. Finally, we demonstrate an abundance of mutations predicted to bind to MHC class II in human cancers as well by employing the same predictive algorithm on corresponding human cancer types. Thus, the tailored immunotherapy approach introduced here may be regarded as a universally applicable blueprint for comprehensive exploitation of the substantial neo-epitope target repertoire of cancers, enabling the effective targeting of every patient's tumour with vaccines produced 'just in time'.


Assuntos
Epitopos de Linfócito T/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Imunoterapia/métodos , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Mutação/genética , Algoritmos , Animais , Linfócitos T CD4-Positivos/imunologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Simulação por Computador , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologia , Exoma/genética , Feminino , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Melanoma Experimental/genética , Camundongos , Medicina de Precisão/métodos , Análise de Sequência de DNA , Análise de Sobrevida
8.
Mol Cell Proteomics ; 18(6): 1255-1268, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31154438

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive brain tumor with poor prognosis to most patients. Immunotherapy of GBM is a potentially beneficial treatment option, whose optimal implementation may depend on familiarity with tumor specific antigens, presented as HLA peptides by the GBM cells. Further, early detection of GBM, such as by a routine blood test, may improve survival, even with the current treatment modalities. This study includes large-scale analyses of the HLA peptidome (immunopeptidome) of the plasma-soluble HLA molecules (sHLA) of 142 plasma samples, and the membranal HLA of GBM tumors of 10 of these patients' tumor samples. Tumor samples were fresh-frozen immediately after surgery and the plasma samples were collected before, and at multiple visits after surgery. In total, this HLA peptidome analysis involved 52 different HLA allotypes and resulted in the identification of more than 35,000 different HLA peptides. Strong correlations were observed in the signal intensities and in the repertoires of identified peptides between the tumors and plasma-soluble HLA peptidomes of the individual patients, whereas low correlations were observed between these HLA peptidomes and the tumors' proteomes. HLA peptides derived from Cancer/Testis Antigens (CTAs) were selected based on their presence among the HLA peptidomes of the patients and absence of expression of their source genes from any healthy and essential human tissues, except from immune-privileged sites. Additionally, peptides were selected as potential biomarkers if their levels in the plasma-sHLA peptidome were significantly reduced after the removal of tumor mass. The CTAs identified among the analyzed HLA peptidomes provide new opportunities for personalized immunotherapy and for early diagnosis of GBM.


Assuntos
Antígenos de Neoplasias/sangue , Neoplasias Encefálicas/sangue , Glioblastoma/sangue , Antígenos de Histocompatibilidade Classe I/sangue , Peptídeos/sangue , Proteoma/metabolismo , Alelos , Biomarcadores Tumorais/sangue , Neoplasias Encefálicas/cirurgia , Glioblastoma/cirurgia , Humanos
9.
Recent Results Cancer Res ; 214: 153-167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31473852

RESUMO

After more than a century of efforts to establish cancer immunotherapy in clinical practice, the advent of checkpoint inhibition (CPI) therapy was a critical breakthrough toward this direction (Hodi et al. in Cell Rep 13(2):412-424, 2010; Wolchok et al. in N Engl J Med 369(2):122-133, 2013; Herbst et al. in Nature 515(7528):563-567, 2014; Tumeh et al. in Nature 515(7528):568-571, 2014). Further, CPIs shifted the focus from long studied shared tumor-associated antigens to mutated ones. As cancer is caused by mutations in somatic cells, the concept to utilize these correlates of 'foreignness' to enable recognition and lysis of the cancer cell by T cell immunity seems an obvious thing to do.


Assuntos
Vacinas Anticâncer , Epitopos/imunologia , Imunoterapia , Neoplasias/terapia , Antígenos de Neoplasias/imunologia , Humanos
10.
Mol Cell Proteomics ; 17(11): 2132-2145, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30072578

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive brain tumor with poor prognosis to most patients. Immunotherapy of GBM is a potentially beneficial treatment option, whose optimal implementation may depend on familiarity with tumor specific antigens, presented as HLA peptides by the GBM cells. Furthermore, early detection of GBM, such as by a routine blood test, may improve survival, even with the current treatment modalities. This study includes large-scale analyses of the HLA peptidome (immunopeptidome) of the plasma-soluble HLA molecules (sHLA) of 142 plasma samples, and the membranal HLA of GBM tumors of 10 of these patients' tumor samples. Tumor samples were fresh-frozen immediately after surgery and the plasma samples were collected before, and at multiple visits after surgery. In total, this HLA peptidome analysis involved 52 different HLA allotypes and resulted in the identification of more than 35,000 different HLA peptides. Strong correlations were observed in the signal intensities and in the repertoires of identified peptides between the tumors and plasma-soluble HLA peptidomes of the individual patients, whereas low correlations were observed between these HLA peptidomes and the tumors' proteomes. HLA peptides derived from Cancer/Testis Antigens (CTAs) were selected based on their presence among the HLA peptidomes of the patients and absence of expression of their source genes from any healthy and essential human tissues, except from immune-privileged sites. Additionally, peptides were selected as potential biomarkers if their levels in the plasma-sHLA peptidome were significantly reduced after the removal of tumor mass. The CTAs identified among the analyzed HLA peptidomes provide new opportunities for personalized immunotherapy and for early diagnosis of GBM.


Assuntos
Antígenos de Neoplasias/sangue , Glioblastoma/sangue , Antígenos HLA/metabolismo , Peptídeos/metabolismo , Proteoma/metabolismo , Alelos , Sequência de Aminoácidos , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/sangue , Membrana Celular/metabolismo , Glioblastoma/cirurgia , Humanos , Peptídeos/sangue , Peptídeos/química , Solubilidade
11.
Curr Issues Mol Biol ; 22: 113-128, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27801664

RESUMO

mRNA vaccines are finally ready to assume their rightful place at the forefront of nucleic acid- based vaccines. Major achievements within the last two decades have turned this highly versatile molecule into a safe and very attractive pharmaceutical platform that combines many positive attributes able to address a broad range of diseases, including cancer. The simplicity of mRNA vaccines greatly reduces complications generally associated with the production of biological vaccines. Intrinsic costimulatory and inflammatory triggers in addition to the provision of the antigenic information makes mRNA an all- in-one molecule that does not need additional adjuvants and that does not pose the risk of genomic integration. Clinical studies in various cancer types are moving forward and promising results with favorable clinical outcome are awaited. This review will recapitulate conceptual, mechanistic and immune-related features of this highly versatile molecule, elucidate how these features have been addressed in the past, and how comprehensive understanding can foster further optimization for broad application possibilities in cancer treatment.


Assuntos
Vacinas Anticâncer/imunologia , Neoplasias/terapia , RNA Mensageiro/genética , Vacinas Anticâncer/genética , Humanos , Imunoterapia Ativa/normas , Imunoterapia Ativa/tendências , RNA Mensageiro/imunologia
12.
J Immunol ; 194(12): 6177-89, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25957167

RESUMO

The systematic assessment of the human immune system bears huge potential to guide rational development of novel immunotherapies and clinical decision making. Multiple assays to monitor the quantity, phenotype, and function of Ag-specific T cells are commonly used to unravel patients' immune signatures in various disease settings and during therapeutic interventions. When compared with tests measuring soluble analytes, cellular immune assays have a higher variation, which is a major technical factor limiting their broad adoption in clinical immunology. The key solution may arise from continuous control of assay performance using TCR-engineered reference samples. We developed a simple, stable, robust, and scalable technology to generate reference samples that contain defined numbers of functional Ag-specific T cells. First, we show that RNA-engineered lymphocytes, equipped with selected TCRs, can repetitively deliver functional readouts of a controlled size across multiple assay platforms. We further describe a concept for the application of TCR-engineered reference samples to keep assay performance within or across institutions under tight control. Finally, we provide evidence that these novel control reagents can sensitively detect assay variation resulting from typical sources of error, such as low cell quality, loss of reagent stability, suboptimal hardware settings, or inaccurate gating.


Assuntos
Testes Imunológicos/métodos , Testes Imunológicos/normas , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Expressão Gênica , Engenharia Genética , Antígenos HLA/química , Antígenos HLA/imunologia , Humanos , Imunoterapia/métodos , Peptídeos/química , Peptídeos/imunologia , Multimerização Proteica , Especificidade do Receptor de Antígeno de Linfócitos T/genética , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia
13.
Cancer Immunol Immunother ; 65(9): 1075-83, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27422115

RESUMO

Intradermal administration of antigen-encoding RNA has entered clinical testing for cancer vaccination. However, insight into the underlying mechanism of RNA uptake, translation and antigen presentation is still limited. Utilizing pharmacologically optimized naked RNA, the dose-response kinetics revealed a rise in reporter signal with increasing RNA amounts and a prolonged RNA translation of reporter protein up to 30 days after intradermal injection. Dendritic cells (DCs) in the dermis were shown to engulf RNA, and the signal arising from the reporter RNA was significantly diminished after DC depletion. Macropinocytosis was relevant for intradermal RNA uptake and translation in vitro and in vivo. By combining intradermal RNA vaccination and inhibition of macropinocytosis, we show that effective priming of antigen-specific CD8(+) T-cells also relies on this uptake mechanism. This report demonstrates that direct antigen translation by dermal DCs after intradermal naked RNA vaccination is relevant for efficient priming of antigen-specific T-cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/metabolismo , RNA/farmacocinética , Animais , Células Dendríticas/imunologia , Feminino , Humanos , Injeções Intradérmicas , Camundongos , Camundongos Endogâmicos C57BL , Pinocitose , RNA/administração & dosagem
16.
BMC Genomics ; 15: 190, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24621249

RESUMO

BACKGROUND: Tumor models are critical for our understanding of cancer and the development of cancer therapeutics. Here, we present an integrated map of the genome, transcriptome and immunome of an epithelial mouse tumor, the CT26 colon carcinoma cell line. RESULTS: We found that Kras is homozygously mutated at p.G12D, Apc and Tp53 are not mutated, and Cdkn2a is homozygously deleted. Proliferation and stem-cell markers, including Top2a, Birc5 (Survivin), Cldn6 and Mki67, are highly expressed while differentiation and top-crypt markers Muc2, Ms4a8a (MS4A8B) and Epcam are not. Myc, Trp53 (tp53), Mdm2, Hif1a, and Nras are highly expressed while Egfr and Flt1 are not. MHC class I but not MHC class II is expressed. Several known cancer-testis antigens are expressed, including Atad2, Cep55, and Pbk. The highest expressed gene is a mutated form of the mouse tumor antigen gp70. Of the 1,688 non-synonymous point variations, 154 are both in expressed genes and in peptides predicted to bind MHC and thus potential targets for immunotherapy development. Based on its molecular signature, we predicted that CT26 is refractory to anti-EGFR mAbs and sensitive to MEK and MET inhibitors, as have been previously reported. CONCLUSIONS: CT26 cells share molecular features with aggressive, undifferentiated, refractory human colorectal carcinoma cells. As CT26 is one of the most extensively used syngeneic mouse tumor models, our data provide a map for the rationale design of mode-of-action studies for pre-clinical evaluation of targeted- and immunotherapies.


Assuntos
Carcinoma/genética , Neoplasias do Colo/genética , Transcriptoma , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Carcinoma/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Endogâmicos BALB C , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas p21(ras)/genética , Análise de Sequência de DNA
17.
Cancer Immunol Res ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38885358

RESUMO

Interleukin-2 (IL-2) is a crucial cytokine in T-cell immunity and a promising combination partner to boost cancer vaccine efficacy. However, therapeutic application of IL-2 is hampered by its short half-life and substantial toxicities. Herein, we report preclinical characterization of a mouse serum albumin-IL-2 fusion protein (Alb-IL2) encoded on nucleoside-modified RNA delivered via a nanoparticle formulation (Alb-IL2 RNA-NP) mediating prolonged cytokine availability. Alb-IL2 RNA-NP was combined with RNA-lipoplex (RNA-LPX) vaccines to evaluate its effect on the expansion of vaccine-induced antigen-specific T-cell immunity. In mice dosed with Alb-IL2 RNA-NP, translated protein was shown to be systemically available up to two days, with an albumin-dependent preferred presence in the tumor and tumor-draining lymph node. Alb-IL2 RNA-NP administration prolonged serum availability of the cytokine compared to murine recombinant IL-2 (rIL-2). In combination with RNA-LPX vaccines, Alb-IL2 RNA-NP administration highly increased expansion of RNA-LPX vaccine-induced CD8+ T cells in the spleen and blood. The combination enhanced and sustained the fraction of IL-2 receptor (IL-2R)α-positive antigen-specific CD8+ T cells and ameliorated the functional capacity of the CD8+ T-cell population. Alb-IL2 RNA-NP strongly improved the antitumor activity and survival of concomitant RNA-LPX vaccination and PD-L1 blockade in a subcutaneous mouse tumor model. The favorable pharmacokinetic properties of Alb-IL2 RNA-NP render it an attractive modality for rationally designed combination immunotherapy. RNA vaccines that induce tumor-specific T-cell immunity for Alb-IL2 RNA-NP to further amplify are particularly attractive combination partners.

18.
Int J Radiat Oncol Biol Phys ; 119(3): 936-945, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163521

RESUMO

PURPOSE: Personalized liposome-formulated mRNA vaccines (RNA-LPX) are a powerful new tool in cancer immunotherapy. In preclinical tumor models, RNA-LPX vaccines are known to achieve potent results when combined with conventional X-ray radiation therapy (XRT). Densely ionizing radiation used in carbon ion radiation therapy (CIRT) may induce distinct effects in combination with immunotherapy compared with sparsely ionizing X-rays. METHODS AND MATERIALS: Within this study, we investigate the potential of CIRT and isoeffective doses of XRT to mediate tumor growth inhibition and survival in murine colon adenocarcinoma models in conjunction with neoantigen (neoAg)-specific RNA-LPX vaccines encoding both major histocompatibility complex (MHC) class I- and class II-restricted tumor-specific neoantigens. We characterize tumor immune infiltrates and antigen-specific T cell responses by flow cytometry and interferon-γ enzyme-linked immunosorbent spot (ELISpot) analyses, respectively. RESULTS: NeoAg RNA-LPX vaccines significantly potentiate radiation therapy-mediated tumor growth inhibition. CIRT and XRT alone marginally prime neoAg-specific T cell responses detected in the tumors but not in the blood or spleens of mice. Infiltration and cytotoxicity of neoAg-specific T cells is strongly driven by RNA-LPX vaccines and is accompanied by reduced expression of the inhibitory markers PD-1 and Tim-3 on these cells. The neoAg RNA-LPX vaccine shows similar overall therapeutic efficacy in combination with both CIRT and XRT, even if the physical radiation dose is lower for carbon ions than for X-rays. CONCLUSIONS: We hence conclude that the combination of CIRT and neoAg RNA-LPX vaccines is a promising strategy for the treatment of radioresistant tumors.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Neoplasias do Colo , Radioterapia com Íons Pesados , Animais , Neoplasias do Colo/radioterapia , Neoplasias do Colo/imunologia , Camundongos , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/imunologia , Antígenos de Neoplasias/imunologia , Radioterapia com Íons Pesados/métodos , Fótons/uso terapêutico , Feminino , Adenocarcinoma/radioterapia , Adenocarcinoma/imunologia , Terapia Combinada/métodos , Lipossomos , Vacinas de mRNA/uso terapêutico , Linhagem Celular Tumoral , Imunoterapia/métodos , RNA Mensageiro , Camundongos Endogâmicos C57BL
19.
Cancer Cell ; 42(4): 568-582.e11, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38490213

RESUMO

Major histocompatibility complex (MHC) class I antigen presentation deficiency is a common cancer immune escape mechanism, but the mechanistic implications and potential strategies to address this challenge remain poorly understood. Studying ß2-microglobulin (B2M) deficient mouse tumor models, we find that MHC class I loss leads to a substantial immune desertification of the tumor microenvironment (TME) and broad resistance to immune-, chemo-, and radiotherapy. We show that treatment with long-lasting mRNA-encoded interleukin-2 (IL-2) restores an immune cell infiltrated, IFNγ-promoted, highly proinflammatory TME signature, and when combined with a tumor-targeting monoclonal antibody (mAB), can overcome therapeutic resistance. Unexpectedly, the effectiveness of this treatment is driven by IFNγ-releasing CD8+ T cells that recognize neoantigens cross-presented by TME-resident activated macrophages. These macrophages acquire augmented antigen presentation proficiency and other M1-phenotype-associated features under IL-2 treatment. Our findings highlight the importance of restoring neoantigen-specific immune responses in the treatment of cancers with MHC class I deficiencies.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Camundongos , Antígenos de Histocompatibilidade Classe I/genética , Interleucina-2/genética , Interleucina-2/imunologia , Neoplasias/genética , RNA Mensageiro , Microambiente Tumoral
20.
PLoS Comput Biol ; 8(9): e1002714, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028300

RESUMO

Next generation sequencing (NGS) has enabled high throughput discovery of somatic mutations. Detection depends on experimental design, lab platforms, parameters and analysis algorithms. However, NGS-based somatic mutation detection is prone to erroneous calls, with reported validation rates near 54% and congruence between algorithms less than 50%. Here, we developed an algorithm to assign a single statistic, a false discovery rate (FDR), to each somatic mutation identified by NGS. This FDR confidence value accurately discriminates true mutations from erroneous calls. Using sequencing data generated from triplicate exome profiling of C57BL/6 mice and B16-F10 melanoma cells, we used the existing algorithms GATK, SAMtools and SomaticSNiPer to identify somatic mutations. For each identified mutation, our algorithm assigned an FDR. We selected 139 mutations for validation, including 50 somatic mutations assigned a low FDR (high confidence) and 44 mutations assigned a high FDR (low confidence). All of the high confidence somatic mutations validated (50 of 50), none of the 44 low confidence somatic mutations validated, and 15 of 45 mutations with an intermediate FDR validated. Furthermore, the assignment of a single FDR to individual mutations enables statistical comparisons of lab and computation methodologies, including ROC curves and AUC metrics. Using the HiSeq 2000, single end 50 nt reads from replicates generate the highest confidence somatic mutation call set.


Assuntos
Artefatos , Análise Mutacional de DNA/métodos , DNA de Neoplasias/genética , Exoma/genética , Melanoma/genética , Mutação/genética , Análise de Sequência de DNA/métodos , Animais , Reações Falso-Positivas , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA