Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nat Mater ; 21(5): 514-517, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35210586

RESUMO

Ultrafast manipulation of magnetism bears great potential for future information technologies. While demagnetization in ferromagnets is governed by the dissipation of angular momentum1-3, materials with multiple spin sublattices, for example antiferromagnets, can allow direct angular momentum transfer between opposing spins, promising faster functionality. In lanthanides, 4f magnetic exchange is mediated indirectly through the conduction electrons4 (the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction), and the effect of such conditions on direct spin transfer processes is largely unexplored. Here, we investigate ultrafast magnetization dynamics in 4f antiferromagnets and systematically vary the 4f occupation, thereby altering the magnitude of the RKKY coupling energy. By combining time-resolved soft X-ray diffraction with ab initio calculations, we find that the rate of direct transfer between opposing moments is directly determined by this coupling. Given the high sensitivity of RKKY to the conduction electrons, our results offer a useful approach for fine tuning the speed of magnetic devices.

2.
Phys Rev Lett ; 130(12): 126802, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37027856

RESUMO

The nature of the antiferromagnetic order in the heavy fermion metal YbRh_{2}Si_{2}, its quantum criticality, and superconductivity, which appears at low mK temperatures, remain open questions. We report measurements of the heat capacity over the wide temperature range 180 µK-80 mK, using current sensing noise thermometry. In zero magnetic field we observe a remarkably sharp heat capacity anomaly at 1.5 mK, which we identify as an electronuclear transition into a state with spatially modulated electronic magnetic order of maximum amplitude 0.1 µ_{B}. We also report results of measurements in magnetic fields in the range 0 to 70 mT, applied perpendicular to the c axis, which show eventual suppression of this order. These results demonstrate a coexistence of a large moment antiferromagnet with putative superconductivity.

3.
Phys Rev Lett ; 131(25): 256501, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181349

RESUMO

It is predicted that strongly interacting spins on a frustrated lattice may lead to a quantum disordered ground state or even form a quantum spin liquid with exotic low-energy excitations. However, a controlled tuning of the frustration strength, separating its effects from those of disorder and other factors, is pending. Here, we perform comprehensive ^{1}H NMR measurements on Y_{3}Cu_{9}(OH)_{19}Cl_{8} single crystals revealing an unusual Q[over →]=(1/3×1/3) antiferromagnetic state below T_{N}=2.2 K. By applying in situ uniaxial stress, we break the symmetry of this disorder-free, frustrated kagome system in a controlled manner yielding a linear increase of T_{N} with strain, in line with theoretical predictions for a distorted kagome lattice. In-plane strain of ≈1% triggers a sizable enhancement ΔT_{N}/T_{N}≈10% due to a release of frustration, demonstrating its pivotal role for magnetic order.

4.
Phys Rev Lett ; 124(23): 237202, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32603174

RESUMO

Spin-orbit interaction and structure inversion asymmetry in combination with magnetic ordering is a promising route to novel materials with highly mobile spin-polarized carriers at the surface. Spin-resolved measurements of the photoemission current from the Si-terminated surface of the antiferromagnet TbRh_{2}Si_{2} and their analysis within an ab initio one-step theory unveil an unusual triple winding of the electron spin along the fourfold-symmetric constant energy contours of the surface states. A two-band k·p model is presented that yields the triple winding as a cubic Rashba effect. The curious in-plane spin-momentum locking is remarkably robust and remains intact across a paramagnetic-antiferromagnetic transition in spite of spin-orbit interaction on Rh atoms being considerably weaker than the out-of-plane exchange field due to the Tb 4f moments.

5.
Phys Rev Lett ; 122(7): 077202, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30848651

RESUMO

Yb(Rh_{1-x}Co_{x})_{2}Si_{2} is a model system to address two challenging problems in the field of strongly correlated electron systems. The first is the intriguing competition between ferromagnetic (FM) and antiferromagnetic (AFM) order when approaching a magnetic quantum critical point (QCP). The second is the occurrence of magnetic order along a very hard crystalline electric field (CEF) direction, i.e., along the one with the smallest available magnetic moment. Here, we present a detailed study of the evolution of the magnetic order in this system from a FM state with moments along the very hard c direction at x=0.27 towards the yet unknown magnetic state at x=0. We first observe a transition towards an AFM canted state with decreasing x and then to a pure AFM state. This confirms that the QCP in YbRh_{2}Si_{2} is AFM, but the phase diagram is very similar to those observed in some inherently FM systems like NbFe_{2} and CeRuPO, which suggests that the basic underlying instability might be FM. Despite the huge CEF anisotropy the ordered moment retains a component along the c axis also in the AFM state. The huge CEF anisotropy in Yb(Rh_{1-x}Co_{x})_{2}Si_{2} excludes that this hard-axis ordering originates from a competing exchange anisotropy as often proposed for other heavy-fermion systems. Instead, it points to an order-by-disorder based mechanism.

6.
Phys Rev Lett ; 123(14): 147202, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702204

RESUMO

We report an experimental and theoretical study of the low-temperature specific heat C and magnetic susceptibility χ of the layered anisotropic triangular-lattice spin-1/2 Heisenberg antiferromagnets Cs_{2}CuCl_{4-x}Br_{x} with x=0, 1, 2, and 4. We find that the ratio J^{'}/J of the exchange couplings ranges from 0.32 to ≈0.78, implying a change (crossover or quantum phase transition) in the materials' magnetic properties from one-dimensional (1D) behavior for J^{'}/J<0.6 to two-dimensional (2D) behavior for J^{'}/J≈0.78. For J^{'}/J<0.6, realized for x=0, 1, and 4, we find a magnetic contribution to the low-temperature specific heat, C_{m}∝T, consistent with spinon excitations in 1D spin-1/2 Heisenberg antiferromagnets. Remarkably, for x=2, where J^{'}/J≈0.78 implies a 2D magnetic character, we also observe C_{m}∝T. This finding, which contrasts the prediction of C_{m}∝T^{2} made by standard spin-wave theories, shows that Fermi-like statistics also plays a significant role for the magnetic excitations in spin-1/2 frustrated 2D antiferromagnets.

7.
Phys Rev Lett ; 119(12): 126402, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-29341652

RESUMO

A ferromagnetic quantum critical point is thought not to exist in two- and three-dimensional metallic systems yet is realized in the Kondo lattice compound YbNi_{4}(P,As)_{2}, possibly due to its one-dimensionality. It is crucial to investigate the dimensionality of the Fermi surface of YbNi_{4}P_{2} experimentally, but common probes such as angle-resolved photoemission spectroscopy and quantum oscillation measurements are lacking. Here, we study the magnetic-field dependence of transport and thermodynamic properties of YbNi_{4}P_{2}. The Kondo effect is continuously suppressed, and additionally we identify nine Lifshitz transitions between 0.4 and 18 T. We analyze the transport coefficients in detail and identify the type of Lifshitz transitions as neck or void type to gain information on the Fermi surface of YbNi_{4}P_{2}. The large number of Lifshitz transitions observed within this small energy window is unprecedented and results from the particular flat renormalized band structure with strong 4f-electron character shaped by the Kondo lattice effect.

8.
Nature ; 474(7351): 362-6, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21677755

RESUMO

The entanglement of quantum states is both a central concept in fundamental physics and a potential tool for realizing advanced materials and applications. The quantum superpositions underlying entanglement are at the heart of the intricate interplay of localized spin states and itinerant electronic states that gives rise to the Kondo effect in certain dilute magnetic alloys. In systems where the density of localized spin states is sufficiently high, they can no longer be treated as non-interacting; if they form a dense periodic array, a Kondo lattice may be established. Such a Kondo lattice gives rise to the emergence of charge carriers with enhanced effective masses, but the precise nature of the coherent Kondo state responsible for the generation of these heavy fermions remains highly debated. Here we use atomic-resolution tunnelling spectroscopy to investigate the low-energy excitations of a generic Kondo lattice system, YbRh(2)Si(2). We find that the hybridization of the conduction electrons with the localized 4f electrons results in a decrease in the tunnelling conductance at the Fermi energy. In addition, we observe unambiguously the crystal-field excitations of the Yb(3+) ions. A strongly temperature-dependent peak in the tunnelling conductance is attributed to the Fano resonance resulting from tunnelling into the coherent heavy-fermion states that emerge at low temperature. Taken together, these features reveal how quantum coherence develops in heavy 4f-electron Kondo lattices. Our results demonstrate the efficiency of real-space electronic structure imaging for the investigation of strong electronic correlations, specifically with respect to coherence phenomena, phase coexistence and quantum criticality.

9.
J Chem Phys ; 145(3): 034702, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27448899

RESUMO

We have investigated the charge transfer mechanism in single crystals of DTBDT-TCNQ and DTBDT-F4TCNQ (where DTBDT is dithieno[2,3-d;2',3'-d'] benzo[1,2-b;4,5-b']dithiophene) using a combination of near-edge X-ray absorption spectroscopy (NEXAFS) and density functional theory calculations (DFT) including final state effects beyond the sudden state approximation. In particular, we find that a description that considers the partial screening of the electron-hole Coulomb correlation on a static level as well as the rearrangement of electronic density shows excellent agreement with experiment and allows to uncover the details of the charge transfer mechanism in DTBDT-TCNQ and DTBDT-F4 TCNQ, as well as a reinterpretation of previous NEXAFS data on pure TCNQ. Finally, we further show that almost the same quality of agreement between theoretical results and experiment is obtained by the much faster Z+1/2 approximation, where the core hole effects are simulated by replacing N or F with atomic number Z with the neighboring atom with atomic number Z+1/2.

10.
Phys Rev Lett ; 110(25): 256402, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23829749

RESUMO

YbRh2Si2 is a prototypical system for studying unconventional antiferromagnetic quantum criticality. However, ferromagnetic correlations are present which can be enhanced via isoelectronic cobalt substitution for rhodium in Yb(Rh(1-x)Co(x))2Si2. So far, the magnetic order with increasing x was believed to remain antiferromagnetic. Here, we present the discovery of ferromagnetism for x = 0.27 below T(C) = 1.30 K in single crystalline samples. Unexpectedly, ordering occurs along the c axis, the hard crystalline electric field direction, where the g factor is an order of magnitude smaller than in the basal plane. Although the spontaneous magnetization is only 0.1 µB/Yb it corresponds to the full expected saturation moment along c taking into account partial Kondo screening.

11.
Phys Rev Lett ; 110(25): 256403, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23829750

RESUMO

We investigate the magnetic field dependent thermopower, thermal conductivity, resistivity, and Hall effect in the heavy fermion metal YbRh2Si2. In contrast to reports on thermodynamic measurements, we find in total three transitions at high fields, rather than a single one at 10 T. Using the Mott formula together with renormalized band calculations, we identify Lifshitz transitions as their origin. The predictions of the calculations show that all experimental results rely on an interplay of a smooth suppression of the Kondo effect and the spin splitting of the flat hybridized bands.

12.
Nat Commun ; 14(1): 5422, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669952

RESUMO

Collective spin excitations in magnetically ordered crystals, called magnons or spin waves, can serve as carriers in novel spintronic devices with ultralow energy consumption. The generation of well-detectable spin flows requires long lifetimes of high-frequency magnons. In general, the lifetime of spin waves in a metal is substantially reduced due to a strong coupling of magnons to the Stoner continuum. This makes metals unattractive for use as components for magnonic devices. Here, we present the metallic antiferromagnet CeCo2P2, which exhibits long-living magnons even in the terahertz (THz) regime. For CeCo2P2, our first-principle calculations predict a suppression of low-energy spin-flip Stoner excitations, which is verified by resonant inelastic X-ray scattering measurements. By comparison to the isostructural compound LaCo2P2, we show how small structural changes can dramatically alter the electronic structure around the Fermi level leading to the classical picture of the strongly damped magnons intrinsic to metallic systems. Our results not only demonstrate that long-lived magnons in the THz regime can exist in bulk metallic systems, but they also open a path for an efficient search for metallic magnetic systems in which undamped THz magnons can be excited.

13.
Nanoscale Adv ; 5(23): 6678-6687, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38024312

RESUMO

The discovery of a square magnetic-skyrmion lattice in GdRu2Si2, with the smallest so far found skyrmion size and without a geometrically frustrated lattice, has attracted significant attention. In this work, we present a comprehensive study of surface and bulk electronic structures of GdRu2Si2 by utilizing momentum-resolved photoemission (ARPES) measurements and first-principles calculations. We show how the electronic structure evolves during the antiferromagnetic transition when a peculiar helical order of 4f magnetic moments within the Gd layers sets in. A nice agreement of the ARPES-derived electronic structure with the calculated one has allowed us to characterize the features of the Fermi surface (FS), unveil the nested region along kz at the corner of the 3D FS, and reveal their orbital compositions. Our findings suggest that the Ruderman-Kittel-Kasuya-Yosida interaction plays a decisive role in stabilizing the spiral-like order of Gd 4f moments responsible for the skyrmion physics in GdRu2Si2. Our results provide a deeper understanding of electronic and magnetic properties of this material, which is crucial for predicting and developing novel skyrmion-based systems.

14.
J Phys Chem Lett ; 14(24): 5537-5545, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37294735

RESUMO

The orientation of the 4f moments offers an additional degree of freedom for engineering the spin-related properties in spintronic nanostructures of lanthanides. Yet, precise monitoring of the direction of magnetic moments remains a challenge. Here, on the example of the antiferromagnets HoRh2Si2 and DyRh2Si2, we investigate the temperature-dependent canting of the 4f moments near the surface. We demonstrate that this canting can be understood in the framework of crystal electric field theory and the exchange magnetic interaction. Using photoelectron spectroscopy, we disclose subtle but certain temperature-dependent changes in the line shape of the 4f multiplet. These changes are directly linked to the canting of the 4f moments, which is different for the individual lanthanide layers near the surface. Our results illustrate the opportunity to monitor the orientation of the 4f-moments with high precision, which is essential for development of novel lanthanide-based nanostructures, interfaces, supramolecular complexes, and single-molecule magnets for various applications.

15.
Phys Rev Lett ; 109(21): 216402, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23215601

RESUMO

Cerium 4f electronic spin dynamics in single crystals of the heavy-fermion system CeFePO is studied by means of ac susceptibility, specific heat, and muon-spin relaxation (µSR). Short-range static magnetism occurs below the freezing temperature T(g) ≈ 0.7 K, which prevents the system from accessing a putative ferromagnetic quantum critical point. In the µSR, the sample-averaged muon asymmetry function is dominated by strongly inhomogeneous spin fluctuations below 10 K and exhibits a characteristic time-field scaling relation expected from glassy spin dynamics, strongly evidencing cooperative and critical spin fluctuations. The overall behavior can be ascribed neither to canonical spin glasses nor other disorder-driven mechanisms.


Assuntos
Cério/química , Compostos Férricos/química , Imãs , Modelos Químicos , Teoria Quântica , Óxidos/química , Fósforo/química
16.
Phys Rev Lett ; 107(26): 267601, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22243181

RESUMO

Angle-resolved photoelectron spectroscopy (ARPES) was used to study the Fermi surface of the heavy-fermion system YbRh(2)Si(2) at a temperature of about 10 K, i.e., a factor of 2 below the Kondo energy scale. We observed sharp structures with a well-defined topology, which were analyzed by comparing with results of band-structure calculations based on the local-density approximation (LDA). The observed bulk Fermi surface presents strong similarities with that expected for a trivalent Yb state, but is slightly larger, has a strong Yb-4f character, and deviates from the LDA results by a larger region without states around the Γ point. These properties are qualitatively explained in the framework of a simple f-d hybridization model. Our analysis highlights the importance of taking into account surface states and doing an appropriate projection along k(z) when comparing ARPES data with results from theoretical calculations.

17.
J Phys Condens Matter ; 33(20)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33561846

RESUMO

The heavy-fermion behavior in intermetallic compounds manifests itself in a quenching of local magnetic moments by developing Kondo spin-singlet many-body states combined with a drastic increase of the effective mass of conduction electrons, which occurs below the lattice Kondo temperatureTK. This behavior is caused by interactions between the strongly localized 4felectrons and itinerant electrons. A controversially discussed question in this context is how the localized electronic states contribute to the Fermi surface upon changing the temperature. One expects that hybridization between the local moments and the itinerant electrons leads to a transition from a small Fermi surface in a non-coherent regime at high temperatures to a large Fermi surface once the coherent Kondo lattice regime is realized belowTK. We demonstrate, using hard x-ray angle-resolved photoemission spectroscopy that the electronic structure of the prototypical heavy fermion compound YbRh2Si2changes with temperature between 100 and 200 K, i.e. far above the Kondo temperature,TK= 25 K, of this system. Our results suggest a transition from a small to a large Fermi surface with decreasing temperature. This result is inconsistent with the prediction of the dynamical mean-field periodic Anderson model and supports the idea of an independent energy scale governing the change of band dispersion.

18.
J Phys Chem Lett ; 12(34): 8328-8334, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34428055

RESUMO

Discovered in 1962, the divalent ferromagnetic semiconductor EuS (TC = 16.5 K, Eg = 1.65 eV) has remained constantly relevant to the engineering of novel magnetically active interfaces, heterostructures, and multilayer sequences and to combination with topological materials. Because detailed information on the electronic structure of EuS and, in particular, its evolution across TC is not well-represented in the literature but is essential for the development of new functional systems, the present work aims at filling this gap. Our angle-resolved photoemission measurements complemented with first-principles calculations demonstrate how the electronic structure of EuS evolves across a paramagnetic-ferromagnetic transition. Our results emphasize the importance of the strong Eu 4f-S 3p mixing for exchange-magnetic splittings of the sulfur-derived bands as well as coupling between f and d orbitals of neighboring Eu atoms to derive the value of TC accurately. The 4f-3p mixing facilitates the coupling between 4f and 5d orbitals of neighboring Eu atoms, which mainly governs the exchange interaction in EuS.

19.
Phys Rev Lett ; 105(23): 237601, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21231502

RESUMO

The occupation, energy separation, and order of the crystal-field-split 4f states are crucial for the understanding of the magnetic properties of rare-earth systems. We provide the experimental evidence that crystal-field-split 4f states exhibit energy dispersion in momentum space leading to variations of energy spacings between them and even of their energy sequence across the Brillouin zone. These observations were made by performing angle-resolved photoemission experiments on YbRh(2)Si(2) and properly simulated within a simple model based on results obtained by inelastic neutron scattering experiments and band structure calculations. Our findings should be generally applicable to rare-earth systems and have considerable impact on the understanding of magnetism and related phenomena.

20.
Phys Rev Lett ; 104(9): 096402, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20366999

RESUMO

As a homologue to the new, Fe-based type of high-temperature superconductors, the electronic structure of the heavy-fermion compound CeFePO was studied by means of angle-resolved resonant photoemission. It was experimentally found-and later on confirmed by local-density approximation (LDA) as well as dynamical mean-field theory (DMFT) calculations-that the Ce 4f states hybridize to the Fe 3d states of d{3z{2}-r{2}} symmetry near the Fermi level that discloses their participation in the occurring electron-correlation phenomena and provides insight into mechanism of superconductivity in oxopnictides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA