Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Exp Bot ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676643

RESUMO

Cannabis sativa L. glandular trichomes (GTs) synthesise large amounts of secondary metabolites, predominantly cannabinoids and terpenoids. The associated demand for carbon and energy makes GTs strong sink tissues with indications that their secondary metabolism is coupled to the availability of photoassimilates. Many metabolites show diurnal patterns of flux, but it is unknown whether cannabinoids and terpenoids are regulated by time of day. We quantified cannabinoids, terpenoids and the GT proteome over a 12-hour light period in flowers of Hindu Kush, a high-tetrahydrocannabinol (THC) cultivar. Major cannabinoids changed significantly over the course of day, resulting in an increase in total measured cannabinoids. Major terpenoids also changed, with sesquiterpenes generally decreasing with day progression. While monoterpenes generally did not decrease, the second most abundant, α-pinene, increased. The GT proteome changed the most within the first six hours of the day and analysis of differentially abundant proteins indicated upregulation of primary metabolism. Surprisingly, key cannabinoid biosynthetic enzymes decreased with daytime progression despite increases in cannabinoid content, which indicate that daytime increases of photoassimilates are the main driver of cannabinoid regulation. This first reporting of variability of cannabinoid and terpenoid biosynthesis over the course of the day has implications for Cannabis research and production.

2.
Rheumatology (Oxford) ; 62(6): 2284-2293, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36227102

RESUMO

OBJECTIVES: Scleroderma renal crisis (SRC) is a rare vascular complication of systemic sclerosis with substantial risks for end-stage renal disease and premature death. Activating autoantibodies (Abs) targeting the angiotensin II type 1 (AT1R) and the endothelin-1 type A receptor (ETAR) have been identified as predictors for SRC. Here, we sought to determine their pathogenic significance for acute renal vascular injury potentially triggering kidney failure and malignant hypertension. METHODS: IgG from patients with SRC was studied for AT1R and ETAR dependent biologic effects on isolated rat renal interlobar arteries and vascular cells including contraction, signalling and mechanisms of receptor activation. RESULTS: In myography experiments, patient IgG exerted vasoconstriction sensitive to inhibition of AT1R and ETAR. This relied on MEK-ERK signalling indicating functional relevance of anti-AT1R and anti-ETAR Abs. The contractile response to angiotensin II and endothelin-1 was amplified by patient IgG containing anti-AT1R and anti-ETAR Abs with substantial crosstalk between both receptors implicating autoimmune receptor hypersensitization. Co-immunoprecipitation experiments indicated heterodimerization between both receptor types which may enable the observed functional interrelation by direct structural interactions. CONCLUSION: We provide experimental evidence that agonistic Abs may contribute to SRC. This effect is presumably related to direct receptor stimulation and additional allosteric effects, at least in heterodimeric receptor constellations. Novel therapies targeted at autoimmune hyperactivation of AT1R and ETAR might improve outcomes in severe cases of SRC.


Assuntos
Injúria Renal Aguda , Esclerodermia Localizada , Lesões do Sistema Vascular , Ratos , Animais , Angiotensina II , Endotelina-1 , Autoanticorpos , Receptor de Endotelina A , Imunoglobulina G
3.
Int J Mol Sci ; 22(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923150

RESUMO

Tolerance of anaerobic germination (AG) is a key trait in the development of direct seeded rice. Through rapid and sustained coleoptile elongation, AG tolerance enables robust seedling establishment under flooded conditions. Previous attempts to fine map and characterize AG2 (qAG7.1), a major centromere-spanning AG tolerance QTL, derived from the indica variety Ma-Zhan Red, have failed. Here, a novel approach of "enriched haplotype" genome-wide association study based on the Ma-Zhan Red haplotype in the AG2 region was successfully used to narrow down AG2 from more than 7 Mb to less than 0.7 Mb. The AG2 peak region contained 27 genes, including the Rc gene, responsible for red pericarp development in pigmented rice. Through comparative variant and transcriptome analysis between AG tolerant donors and susceptible accessions several candidate genes potentially controlling AG2 were identified, among them several regulatory genes. Genome-wide comparative transcriptome analysis suggested differential regulation of sugar metabolism, particularly trehalose metabolism, as well as differential regulation of cell wall modification and chloroplast development to be implicated in AG tolerance mechanisms.


Assuntos
Cromossomos de Plantas/genética , Estudo de Associação Genômica Ampla , Germinação , Oryza/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Anaerobiose , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética
4.
Ann Bot ; 124(3): 447-460, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31180503

RESUMO

BACKGROUND AND AIMS: Understanding variation in seed longevity, especially within closely related germplasm, will lead to better understanding of the molecular basis of this trait, which is particularly important for seed genebanks, but is also relevant to anyone handling seeds. We therefore set out to determine the relative seed longevity of diverse Indica rice accessions through storage experiments. Since antioxidants are purported to play a role in seed storability, the antioxidant activity and phenolic content of caryopses were determined. METHODS: Seeds of 299 Indica rice accessions harvested at 31, 38 and 45 d after heading (DAH) between March and May 2015 and differing in harvest moisture content (MC) were subsequently stored at 10.9 % MC and 45 °C. Samples were taken at regular intervals and sown for germination. Germination data were subjected to probit analysis and the resulting parameters that describe the loss of viability during storage were used for genome-wide association (GWA) analysis. KEY RESULTS: The seed longevity parameters, Ki [initial viability in normal equivalent deviates (NED)], -σ-1 (σ is the time for viability to fall by 1 NED in experimental storage) and p50 [time for viability to fall to 50 % (0 NED)], varied considerably across the 299 Indica accessions. Seed longevity tended to increase as harvest MC decreased and to decrease as harvest MC increased. Eight major loci associated with seed longevity parameters were identified through GWA analysis. The favourable haplotypes on chromosomes 1, 3, 4, 9 and 11 enhanced p50 by ratios of 0.22-1.86. CONCLUSIONS: This is the first study to describe the extent of variation in σ within a species' variety group. A priori candidate genes selected based on rice genome annotation and gene network ontology databases suggested that the mechanisms conferring high seed longevity might be related to DNA repair and transcription, sugar metabolism, reactive oxygen species scavenging and embryonic/root development.


Assuntos
Oryza , Estudo de Associação Genômica Ampla , Germinação , Longevidade , Sementes
5.
Plant Cell Environ ; 41(12): 2731-2743, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29981171

RESUMO

Elucidation of the genetic control of rice seedling vigour is now paramount with global shifts towards direct seeding of rice and the consequent demand for early vigour traits in breeding programmes. In a genome-wide association study using an indica-predominant diversity panel, we identified quantitative trait loci (QTLs) for root length and root number in rice seedlings. Among the identified QTLs, one QTL for lateral root number on chromosome 11, qTIPS-11, was associated with a 32.4% increase in lateral root number. The locus was validated in independent backgrounds, and a predicted glycosyl hydrolase, TIPS-11-9, was identified as the causal gene for observed phenotypic differences. TIPS-11-9 was differentially expressed in emerging lateral roots of contrasting qTIPS-11 haplotypes, which was likely due to differences in cis-regulatory elements and auxin responsiveness. Abolishment of Tips-11-9 function through T-DNA insertion in a qTIPS-11-positive background resulted in a reduction of lateral root number, which negatively affected biomass accumulation, particularly under phosphorous-limiting conditions. Marker-assisted introgression of qTIPS-11 into modern indica varieties will aid in the generation of varieties adapted to direct seeding and thus facilitate the adoption of direct seeding practices in tropical Asia.


Assuntos
Oryza/genética , Raízes de Plantas/crescimento & desenvolvimento , Cromossomos de Plantas/genética , Produção Agrícola , Genes de Plantas/genética , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Haplótipos , Desequilíbrio de Ligação/genética , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Melhoramento Vegetal/métodos , Raízes de Plantas/fisiologia , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável
6.
Nature ; 483(7389): 341-4, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22398443

RESUMO

Strigolactones were originally identified as stimulators of the germination of root-parasitic weeds that pose a serious threat to resource-limited agriculture. They are mostly exuded from roots and function as signalling compounds in the initiation of arbuscular mycorrhizae, which are plant-fungus symbionts with a global effect on carbon and phosphate cycling. Recently, strigolactones were established to be phytohormones that regulate plant shoot architecture by inhibiting the outgrowth of axillary buds. Despite their importance, it is not known how strigolactones are transported. ATP-binding cassette (ABC) transporters, however, are known to have functions in phytohormone translocation. Here we show that the Petunia hybrida ABC transporter PDR1 has a key role in regulating the development of arbuscular mycorrhizae and axillary branches, by functioning as a cellular strigolactone exporter. P. hybrida pdr1 mutants are defective in strigolactone exudation from their roots, resulting in reduced symbiotic interactions. Above ground, pdr1 mutants have an enhanced branching phenotype, which is indicative of impaired strigolactone allocation. Overexpression of Petunia axillaris PDR1 in Arabidopsis thaliana results in increased tolerance to high concentrations of a synthetic strigolactone, consistent with increased export of strigolactones from the roots. PDR1 is the first known component in strigolactone transport, providing new opportunities for investigating and manipulating strigolactone-dependent processes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/efeitos dos fármacos , Lactonas/farmacologia , Petunia/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Simbiose/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/genética , Ácido Abscísico/farmacologia , Arabidopsis/embriologia , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Dados de Sequência Molecular , Micorrizas/efeitos dos fármacos , Ácidos Naftalenoacéticos/farmacologia , Petunia/genética , Fenótipo , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia
7.
Plant Biotechnol J ; 15(1): 15-26, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27228336

RESUMO

The physiology and molecular regulation of phosphorus (P) remobilization from vegetative tissues to grains during grain filling is poorly understood, despite the pivotal role it plays in the global P cycle. To test the hypothesis that a subset of genes involved in the P starvation response are involved in remobilization of P from flag leaves to developing grains, we conducted an RNA-seq analysis of rice flag leaves during the preremobilization phase (6 DAA) and when the leaves were acting as a P source (15 DAA). Several genes that respond to phosphate starvation, including three purple acid phosphatases (OsPAP3, OsPAP9b and OsPAP10a), were significantly up-regulated at 15 DAA, consistent with a role in remobilization of P from flag leaves during grain filling. A number of genes that have not been implicated in the phosphate starvation response, OsPAP26, SPX-MFS1 (a putative P transporter) and SPX-MFS2, also showed expression profiles consistent with involvement in P remobilization from senescing flag leaves. Metabolic pathway analysis using the KEGG system suggested plastid membrane lipid synthesis is a critical process during the P remobilization phase. In particular, the up-regulation of OsPLDz2 and OsSQD2 at 15 DAA suggested phospholipids were being degraded and replaced by other lipids to enable continued cellular function while liberating P for export to developing grains. Three genes associated with RNA degradation that have not previously been implicated in the P starvation response also showed expression profiles consistent with a role in P mobilization from senescing flag leaves.


Assuntos
Grão Comestível/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Fósforo/metabolismo , Folhas de Planta/metabolismo , Análise de Sequência de RNA/métodos , Envelhecimento , Sequência de Bases , Mapeamento Cromossômico , Genes de Plantas/genética , Metabolismo dos Lipídeos , Redes e Vias Metabólicas/genética , Fósforo/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação para Cima
8.
J Exp Bot ; 68(15): 4389-4406, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28922773

RESUMO

Low night and high day temperatures during sensitive reproductive stages cause spikelet sterility in rice. Phenotyping of tolerance traits in the field is difficult because of temporal interactions with phenology and organ temperature differing from ambient. Physiological models can be used to separate these effects. A 203-accession indica rice diversity panel was phenotyped for sterility in ten environments in Senegal and Madagascar and climate data were recorded. Here we report on sterility responses while a companion study reported on phenology. The objectives were to improve the RIDEV model of rice thermal sterility, to estimate response traits by fitting model parameters, and to link the response traits to genomic regions through genome-wide association studies (GWAS). RIDEV captured 64% of variation of sterility when cold acclimation during vegetative stage was simulated, but only 38% when it was not. The RIDEV parameters gave more and stronger quantitative trait loci (QTLs) than index variables derived more directly from observation. The 15 QTLs identified at P<1 × 10-5 (33 at P<1 × 10-4) were related to sterility effects of heat, cold, cold acclimation, or unexplained causes (baseline sterility). Nine annotated genes were found on average within the 50% linkage disequilibrium (LD) region. Among them, one to five plausible candidate genes per QTL were identified based on known expression profiles (organ, stage, stress factors) and function. Meiosis-, development- and flowering-related genes were frequent, as well a stress signaling kinases and transcription factors. Putative epigenetic factors such as DNA methylases or histone-related genes were frequent in cold-acclimation QTLs, and positive-effect alleles were frequent in cold-tolerant highland rice from Madagascar. The results indicate that epigenetic control of acclimation may be important in indica rice genotypes adapted to cool environments.


Assuntos
Adaptação Biológica , Clima , Genes de Plantas , Estudo de Associação Genômica Ampla , Temperatura Alta/efeitos adversos , Oryza/genética , Mudança Climática , Flores/crescimento & desenvolvimento , Madagáscar , Modelos Biológicos , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Fenótipo , Senegal
9.
J Exp Bot ; 68(15): 4369-4388, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28922774

RESUMO

Phenology and time of flowering are crucial determinants of rice adaptation to climate variation. A previous study characterized flowering responses of 203 diverse indica rices (the ORYTAGE panel) to ten environments in Senegal (six sowing dates) and Madagascar (two years and two altitudes) under irrigation in the field. This study used the physiological phenology model RIDEV V2 to heuristically estimate component traits of flowering such as cardinal temperatures (base temperature (Tbase) and optimum temperature), basic vegetative phase, photoperiod sensitivity and cold acclimation, and to conduct a genome-wide association study for these traits using 16 232 anonymous single-nucleotide polymorphism (SNP) markers. The RIDEV model after genotypic parameter optimization explained 96% of variation in time to flowering for Senegal alone and 91% for Senegal and Madagascar combined. The latter was improved to 94% by including an acclimation parameter reducing Tbase when the crop experienced low temperatures during early vegetative development. Eighteen significant (P<1.0 × 10-5) quantitative trait loci (QTLs) were identified, namely ten for RIDEV parameters and eight for climatic index variables (difference in time to flowering between key environments). Co-localization of QTLs for different traits were rare. RIDEV parameters gave QTLs that were mostly more significant and distinct from QTLs for index variables. Candidate genes were investigated within the estimated 50% linkage disequilibrium regions of 39 kB. In addition to several known flowering network genes, they included genes related to thermal stress adaptation and epigenetic control mechanisms. The peak SNP for a QTL for the crop parameter Tbase (P=2.0 × 10-7) was located within HD3a, a florigen that was recently identified as implicated in flowering under cool conditions.


Assuntos
Adaptação Biológica , Clima , DNA de Plantas/genética , Genes de Plantas , Estudo de Associação Genômica Ampla , Oryza/genética , Polimorfismo Genético , Mudança Climática , Flores/crescimento & desenvolvimento , Madagáscar , Modelos Biológicos , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Fenótipo , Estações do Ano , Senegal
10.
Theor Appl Genet ; 130(9): 1903-1914, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28623548

RESUMO

KEY MESSAGE: Zinc deficiency is a widespread soil constraint in rice production. Here, we present QTL/candidate genes associated with Zn deficiency tolerance identified through bi-parental QTL mapping and genome-wide association analysis. Zinc (Zn) deficiency is a widespread soil constraint in rice production. Despite several physiological studies elucidating Zn deficiency tolerance mechanisms, little is known about genetic factors conferring tolerance. To identify QTL associated with root development, biomass accumulation, and grain yield under Zn deficiency, we combined bi-parental QTL mapping in a population of 200 backcross inbred (BC1F6) lines and genome-wide association analysis using 247 k SNP markers across 140 accessions of an indica diversity panel. Three QTLs for Zn deficiency tolerance on chromosomes 3, 6, and 12 co-localized in both approaches and the association analysis detected two additional strong QTL on chromosomes 1 and 9 not present in the bi-parental population. Based on haplotype analysis of the indica panel, biomass consistently increased due to the minor 'tolerance' haplotypes, which had frequencies between 13 and 34%. By utilizing the previous transcript data collected from the same Zn-deficient field, we identified one putative candidate gene within the chromosome 6-QTL, which was associated with all traits in both analyses. Gene Os06g44220 was barely expressed under +Zn conditions but strongly upregulated in both root and shoot under stress and consistently more so in the tolerant genotype. Os06g44220 is an uncharacterized gene with expression previously detected only under salinity stress. Four SNP alterations within the promoter region distinguish the two alleles identified and a genotype tolerant to Zn deficiency shares the same allele as salinity tolerant varieties, lending support to the hypothesis that this gene may confer tolerance to both stresses.


Assuntos
Oryza/genética , Locos de Características Quantitativas , Zinco/química , Alelos , Mapeamento Cromossômico , Estudos de Associação Genética , Haplótipos , Oryza/crescimento & desenvolvimento , Fenótipo , Solo/química , Zinco/deficiência
11.
Plant Cell Rep ; 36(5): 745-757, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28349358

RESUMO

KEY MESSAGE: CRISPR-Cas9/Cpf1 system with its unique gene targeting efficiency, could be an important tool for functional study of early developmental genes through the generation of successful knockout plants. The introduction and utilization of systems biology approaches have identified several genes that are involved in early development of a plant and with such knowledge a robust tool is required for the functional validation of putative candidate genes thus obtained. The development of the CRISPR-Cas9/Cpf1 genome editing system has provided a convenient tool for creating loss of function mutants for genes of interest. The present study utilized CRISPR/Cas9 and CRISPR-Cpf1 technology to knock out an early developmental gene EPFL9 (Epidermal Patterning Factor like-9, a positive regulator of stomatal development in Arabidopsis) orthologue in rice. Germ-line mutants that were generated showed edits that were carried forward into the T2 generation when Cas9-free homozygous mutants were obtained. The homozygous mutant plants showed more than an eightfold reduction in stomatal density on the abaxial leaf surface of the edited rice plants. Potential off-target analysis showed no significant off-target effects. This study also utilized the CRISPR-LbCpf1 (Lachnospiracae bacterium Cpf1) to target the same OsEPFL9 gene to test the activity of this class-2 CRISPR system in rice and found that Cpf1 is also capable of genome editing and edits get transmitted through generations with similar phenotypic changes seen with CRISPR-Cas9. This study demonstrates the application of CRISPR-Cas9/Cpf1 to precisely target genomic locations and develop transgene-free homozygous heritable gene edits and confirms that the loss of function analysis of the candidate genes emerging from different systems biology based approaches, could be performed, and therefore, this system adds value in the validation of gene function studies.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Genoma de Planta/genética , Oryza/genética , Proteínas de Plantas/genética , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética
12.
Planta ; 243(6): 1351-60, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27040840

RESUMO

MAIN CONCLUSION: This review presents the role of strigolactone transport in regulating plant root and shoot architecture, plant-fungal symbiosis and the crosstalk with several phytohormone pathways. The authors, based on their data and recently published results, suggest that long-distance, as well local strigolactone transport might occur in a cell-to-cell manner rather than via the xylem stream. Strigolactones (SLs) are recently characterized carotenoid-derived phytohormones. They play multiple roles in plant architecture and, once exuded from roots to soil, in plant-rhizosphere interactions. Above ground SLs regulate plant developmental processes, such as lateral bud outgrowth, internode elongation and stem secondary growth. Below ground, SLs are involved in lateral root initiation, main root elongation and the establishment of the plant-fungal symbiosis known as mycorrhiza. Much has been discovered on players and patterns of SL biosynthesis and signaling and shown to be largely conserved among different plant species, however little is known about SL distribution in plants and its transport from the root to the soil. At present, the only characterized SL transporters are the ABCG protein PLEIOTROPIC DRUG RESISTANCE 1 from Petunia axillaris (PDR1) and, in less detail, its close homologue from Nicotiana tabacum PLEIOTROPIC DRUG RESISTANCE 6 (PDR6). PDR1 is a plasma membrane-localized SL cellular exporter, expressed in root cortex and shoot axils. Its expression level is regulated by its own substrate, but also by the phytohormone auxin, soil nutrient conditions (mainly phosphate availability) and mycorrhization levels. Hence, PDR1 integrates information from nutrient availability and hormonal signaling, thus synchronizing plant growth with nutrient uptake. In this review we discuss the effects of PDR1 de-regulation on plant development and mycorrhization, the possible cross-talk between SLs and other phytohormone transporters and finally the need for SL transporters in different plant species.


Assuntos
Lactonas/metabolismo , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Transporte Biológico , Comunicação Celular , Sequência Conservada , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Análise de Sequência de Proteína , Simbiose
13.
Plant Cell Environ ; 39(12): 2725-2739, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27628025

RESUMO

As a first line of defense against insect herbivores many plants store high concentrations of toxic and deterrent secondary metabolites in glandular trichomes. Plant Pleiotropic Drug Resistance (PDR)-type ABC transporters are known secondary metabolite transporters, and several have been implicated in pathogen or herbivore defense. Here, we report on Petunia hybrida PhPDR2 as a major contributor to trichome-related chemical defense. PhPDR2 was found to localize to the plasma membrane and be predominantly expressed in multicellular glandular trichomes of leaves and stems. Down-regulation of PhPDR2 via RNA interference (pdr2) resulted in a markedly higher susceptibility of the transgenic plants to the generalist foliage feeder Spodoptera littoralis. Untargeted screening of pdr2 trichome metabolite contents showed a significant decrease in petuniasterone and petuniolide content, compounds, which had previously been shown to act as potent toxins against various insects. Our findings suggest that PhPDR2 plays a leading role in controlling petuniasterone levels in leaves and trichomes of petunia, thus contributing to herbivory resistance.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Herbivoria , Petunia/fisiologia , Proteínas de Plantas/metabolismo , Esteroides/metabolismo , Tricomas/metabolismo , Animais , Membrana Celular/metabolismo , Ergosterol/análogos & derivados , Ergosterol/metabolismo , Petunia/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Spodoptera , Esteroides/fisiologia , Tricomas/fisiologia
14.
J Exp Bot ; 67(12): 3605-15, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27036129

RESUMO

Improving nutrient uptake is an objective in crop breeding, especially in tropical areas where infertile soils dominate and farmers may not have the resources to improve soil fertility through fertilizer application. Scientific endeavors to understand the genetic basis of nutrient acquisition have mostly followed reverse genetic approaches. This has undoubtedly led to improved understanding of basic principles in root development and nutrient transport. However, little evidence suggests that the genes identified are actively utilized in breeding programs, and the bottleneck has been the failure to establish links between allelic variation for identified genes and performance in the field. Screening experiments typically reveal large genotypic variation in performance under nutrient deficiency, strongly suggesting the presence of superior alleles for genes controlling root growth and/or nutrient uptake processes. Progress in sequencing technology has enabled characterizations of allelic variation across whole genomes and an international effort has recently culminated in the sequencing of 3000 rice genomes from the International Rice Research Institute genebank. Queries of the 3000 rice sequence database offer immediate possibilities to assess the extent to which allelic variation exists for candidate genes. By selecting subsets of accessions, allelic effects can be tested, diagnostic markers developed, and new donors identified. Technological and conceptual advances in phenotyping of root traits offer improved possibilities to assure that trait-allele associations are established in ways that link to field performance. Genotype-to-phenotype relationships can thus be predicted and tested with unprecedented precision, facilitating the discovery and transfer of beneficial nutrition-related alleles and associated markers into existing breeding pipelines.


Assuntos
Oryza/genética , Melhoramento Vegetal , Raízes de Plantas/genética , Seleção Genética , Marcadores Genéticos , Técnicas de Genotipagem , Fenótipo
15.
J Exp Bot ; 67(5): 1221-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26662950

RESUMO

Inefficient use of phosphorus (P) in agriculture adds to production costs, increases the risk of eutrophication of waterways, and contributes to the rapid depletion of the world's non-renewable rock phosphate supplies. The removal of large quantities of P from fields in harvested grains is a major driver in the global P cycle, but opportunities exist to reduce the amount of P in harvested grains through plant breeding. Using rice (Oryza sativa L.) as a model crop, we examine our current understanding of the process of P loading into grain and its regulation by genetic and environmental factors. We expose a dearth of knowledge on the physiological processes involved in loading P into grains, poor resolution of the genes and networks involved in P mobilization from vegetative tissues to grains, and limited understanding of genetic versus environmental contributions to variation in grain P concentrations observed among genotypes. We discuss potential breeding strategies and highlight key research gaps that should be addressed to facilitate these breeding approaches. Given the strong economic and environmental incentives for a low grain P trait, we suggest that some of the investment and resources currently directed to determining the molecular regulation of P starvation responses in model plant species should be diverted to resolving the physiology, genetics, and molecular regulation of P loading into cereal grains.


Assuntos
Produtos Agrícolas/metabolismo , Fósforo/metabolismo , Produtos Agrícolas/genética , Grão Comestível , Meio Ambiente , Genótipo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo
16.
Ann Bot ; 118(6): 1151-1162, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27590335

RESUMO

BACKGROUNDS AND AIMS: In cultivated rice, phosphorus (P) in grains originates from two possible sources, namely exogenous (post-flowering root P uptake from soil) or endogenous (P remobilization from vegetative parts) sources. This study investigates P partitioning and remobilization in rice plants throughout grain filling to resolve contributions of P sources to grain P levels in rice. METHODS: Rice plants (Oryza sativa 'IR64') were grown under P-sufficient or P-deficient conditions in the field and in hydroponics. Post-flowering uptake, partitioning and re-partitioning of P was investigated by quantifying tissue P levels over the grain filling period in the field conditions, and by employing 33P isotope as a tracer in the hydroponic study. KEY RESULTS: Post-flowering P uptake represented 40-70 % of the aerial plant P accumulation at maturity. The panicle was the main P sink in all studies, and the amount of P potentially remobilized from vegetative tissues to the panicle during grain filling was around 20 % of the total aerial P measured at flowering. In hydroponics, less than 20 % of the P tracer taken up at 9 d after flowering (DAF) was found in the above-ground tissues at 14 DAF and half of it was partitioned to the panicle in both P treatments. CONCLUSIONS: The results demonstrate that P uptake from the soil during grain filling is a critical contributor to the P content in grains in irrigated rice. The P tracer study suggests that the mechanism of P loading into grains involves little direct transfer of post-flowering P uptake to the grain but rather substantial mobilization of P that was previously taken up and stored in vegetative tissues.


Assuntos
Oryza/crescimento & desenvolvimento , Fósforo/metabolismo , Sementes/crescimento & desenvolvimento , Hidroponia , Oryza/química , Oryza/metabolismo , Fósforo/análise , Radioisótopos de Fósforo/metabolismo , Folhas de Planta/química , Caules de Planta/química , Sementes/química , Sementes/metabolismo
17.
Front Plant Sci ; 15: 1412079, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903434

RESUMO

Monoecy in Cannabis sativa L. has long been considered an industrially important trait due to the increased uniformity it offers and was thought to be exclusively associated with XX females. The isolation and characterisation of a monoecious individual with XY chromosomes sourced from non-proprietary germplasm is reported for the first time. The chromosomal make up of this trait was confirmed through inflorescence structure, growth habit, PCR analysis and sexual phenotypes of progeny from a series of targeted crosses. The identification of an XY monoecious phenotype widens our understanding of monoecy in Cannabis and has important implications for breeding, particularly for producing F1-hybrid seed.

18.
PLoS One ; 19(5): e0302745, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38776277

RESUMO

Pigmented rice, especially black rice, is gaining popularity as it is rich in antioxidants such as anthocyanins and γ-oryzanol. At present, knowledge about temporal control of biosynthesis and accumulation of antioxidants during grain development is limited. To address this, the accumulation patterns of anthocyanins and γ-oryzanol were assessed in two distinct black rice genotypes over the course of grain development, and the expression of known regulatory genes for anthocyanin biosynthesis was examined. The results indicated that total γ-oryzanol content increased continuously throughout grain development, while total anthocyanins peaked at dough stage (15 to 21 days after flowering) followed by a decline until grain maturity in both genotypes. However, the rate of decrease in anthocyanin content differed between genotypes, and a more prominent decline in cyanidin 3-O-glucoside (C3G) relative to peonidin 3-O-glucoside (P3G) was observed for both. Anthocyanin content was closely linked with the expression of key regulatory genes in the MBW (MYB-bHLH-WD40) complex. This improved knowledge of the genotype-specific biosynthesis (anthocyanins only) and accumulation patterns of anthocyanins and γ-oryzanol can inform subsequent research efforts to increase concentrations of these key antioxidants in black rice grains.


Assuntos
Antocianinas , Oryza , Fenilpropionatos , Antocianinas/metabolismo , Antocianinas/biossíntese , Oryza/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Fenilpropionatos/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Glucosídeos/metabolismo , Glucosídeos/biossíntese , Grão Comestível/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Antioxidantes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA