Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 81(14): 3007-3017.e5, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34107305

RESUMO

RAD51 facilitates replication fork reversal and protects reversed forks from nuclease degradation. Although potentially a useful replication stress response mechanism, unregulated fork reversal can cause genome instability. Here we show that RADX, a single-strand DNA binding protein that binds to and destabilizes RAD51 nucleofilaments, can either inhibit or promote fork reversal depending on replication stress levels. RADX inhibits fork reversal at elongating forks, thereby preventing fork slowing and collapse. Paradoxically, in the presence of persistent replication stress, RADX localizes to stalled forks to generate reversed fork structures. Consequently, inactivating RADX prevents fork-reversal-dependent telomere dysfunction in the absence of RTEL1 and blocks nascent strand degradation when fork protection factors are inactivated. Addition of RADX increases SMARCAL1-dependent fork reversal in conditions in which pre-binding RAD51 to a model fork substrate is inhibitory. Thus, RADX directly interacts with RAD51 and single-strand DNA to confine fork reversal to persistently stalled forks.


Assuntos
Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Instabilidade Genômica/genética , Origem de Replicação/genética , Linhagem Celular , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , Reparo do DNA/genética , DNA de Cadeia Simples/genética , Células HEK293 , Células HeLa , Humanos , Ligação Proteica/genética , Rad51 Recombinase/genética
2.
Appl Environ Microbiol ; 81(18): 6484-95, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26162874

RESUMO

Luciferase is a useful, noninvasive reporter of gene regulation that can be continuously monitored over long periods of time; however, its use is problematic in fast-growing microbes like bacteria and yeast because rapidly changing cell numbers and metabolic states also influence bioluminescence, thereby confounding the reporter's signal. Here we show that these problems can be overcome in the budding yeast Saccharomyces cerevisiae by simultaneously monitoring bioluminescence from two different colors of beetle luciferase, where one color (green) reports activity of a gene of interest, while a second color (red) is stably expressed and used to continuously normalize green bioluminescence for fluctuations in signal intensity that are unrelated to gene regulation. We use this dual-luciferase strategy in conjunction with a light-inducible promoter system to test whether different phases of yeast respiratory oscillations are more suitable for heterologous protein production than others. By using pulses of light to activate production of a green luciferase while normalizing signal variation to a red luciferase, we show that the early reductive phase of the yeast metabolic cycle produces more luciferase than other phases.


Assuntos
Bactérias/crescimento & desenvolvimento , Genes Reporter , Luciferases/genética , Medições Luminescentes/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Contagem de Células , Cor , Luz , Luciferases/biossíntese , Luciferases/metabolismo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/crescimento & desenvolvimento
3.
Sci Adv ; 8(13): eabm0314, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35353580

RESUMO

Replication-coupled DNA repair and damage tolerance mechanisms overcome replication stress challenges and complete DNA synthesis. These pathways include fork reversal, translesion synthesis, and repriming by specialized polymerases such as PRIMPOL. Here, we investigated how these pathways are used and regulated in response to varying replication stresses. Blocking lagging-strand priming using a POLα inhibitor slows both leading- and lagging-strand synthesis due in part to RAD51-, HLTF-, and ZRANB3-mediated, but SMARCAL1-independent, fork reversal. ATR is activated, but CHK1 signaling is dampened compared to stalling both the leading and lagging strands with hydroxyurea. Increasing CHK1 activation by overexpressing CLASPIN in POLα-inhibited cells promotes replication elongation through PRIMPOL-dependent repriming. CHK1 phosphorylates PRIMPOL to promote repriming irrespective of the type of replication stress, and this phosphorylation is important for cellular resistance to DNA damage. However, PRIMPOL activation comes at the expense of single-strand gap formation, and constitutive PRIMPOL activity results in reduced cell fitness.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA , Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/genética , Fosforilação
4.
Cell Rep ; 24(3): 538-545, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30021152

RESUMO

RAD51 promotes homologous recombination repair (HR) of double-strand breaks and acts during DNA replication to facilitate fork reversal and protect nascent DNA strands from nuclease digestion. Several additional HR proteins regulate fork protection by promoting RAD51 filament formation. Here, we show that RADX modulates stalled fork protection by antagonizing RAD51. Consequently, silencing RADX restores fork protection in cells deficient for BRCA1, BRCA2, FANCA, FANCD2, or BOD1L. Inactivating RADX prevents both MRE11- and DNA2-dependent fork degradation. Furthermore, RADX overexpression causes fork degradation that is dependent on these nucleases and fork reversal. The amount of RAD51 determines the fate of stalled replication forks, with more RAD51 required for fork protection than fork reversal. Finally, we find that RADX effectively competes with RAD51 for binding to single-stranded DNA, supporting a model in which RADX buffers RAD51 to ensure the right amount of reversal and protection to maintain genome stability.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Rad51 Recombinase/metabolismo , Proteína BRCA1/metabolismo , Linhagem Celular , DNA/metabolismo , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Inativação Gênica/efeitos dos fármacos , Humanos , Proteína Homóloga a MRE11/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA