Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Phys Rev Lett ; 132(23): 233001, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38905671

RESUMO

Interatomic Coulombic decay (ICD) plays a crucial role in weakly bound complexes exposed to intense or high-energy radiation. So far, neutral or ionic atoms or molecules have been prepared in singly excited electron or hole states that can transfer energy to neighboring centers and cause ionization and radiation damage. Here we demonstrate that a doubly excited atom, despite its extremely short lifetime, can decay by ICD; evidenced by high-resolution photoelectron spectra of He nanodroplets excited to the 2s2p+ state. We find that ICD proceeds by relaxation into excited He^{*}He^{+} atom-pair states, in agreement with calculations. The ability of inducing ICD by resonant excitation far above the single-ionization threshold opens opportunities for controlling radiation damage to a high degree of element specificity and spectral selectivity.

2.
J Chem Phys ; 160(9)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38445733

RESUMO

Helium nanodroplets ("HNDs") are widely used for forming tailor-made clusters and molecular complexes in a cold, transparent, and weakly interacting matrix. The characterization of embedded species by mass spectrometry is often complicated by the fragmentation and trapping of ions in the HNDs. Here, we systematically study fragment ion mass spectra of HND-aggregated water and oxygen clusters following their ionization by charge transfer ionization ("CTI") and Penning ionization ("PEI"). While the efficiency of PEI of embedded clusters is lower than for CTI by about factor 10, both the mean sizes of detected water clusters and the relative yields of unprotonated cluster ions are significantly larger, making PEI a "soft ionization" scheme. However, the tendency of ions to remain bound to HNDs leads to a reduced detection efficiency for large HNDs containing >104 helium atoms. These results are instrumental in determining optimal conditions for mass spectrometry and photoionization spectroscopy of molecular complexes and clusters aggregated in HNDs.

3.
Phys Rev Lett ; 131(2): 023001, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505945

RESUMO

Ionization of matter by energetic radiation generally causes complex secondary reactions that are hard to decipher. Using large helium nanodroplets irradiated by extreme ultraviolet (XUV) photons, we show that the full chain of processes ensuing primary photoionization can be tracked in detail by means of high-resolution electron spectroscopy. We find that elastic and inelastic scattering of photoelectrons efficiently induces interatomic Coulombic decay (ICD) in the droplets. This type of indirect ICD even becomes the dominant process of electron emission in nearly the entire XUV range in large droplets with radius ≳40 nm. Indirect ICD processes induced by electron scattering likely play an important role in other condensed-phase systems exposed to ionizing radiation as well, including biological matter.

4.
Phys Chem Chem Phys ; 24(5): 2944-2957, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35076648

RESUMO

The fragmentation dynamics of the gas-phase, doubly charged camphor molecule, formed by Auger decay following carbon 1s ionisation, using soft X-ray synchrotron radiation, is presented in this work. The technique of velocity map imaging combined with a photoelectron-photoion-photoion coincidence (VMI-PEPIPICO) is used for both electron energy and ion momentum (in-sequence) measurements. The experimental study is complemented by molecular dynamics simulation, performed with an NVT (moles, volume, and temperature) ensemble. Velocity Verlet algorithms were used for time integration at various internal energies. These simulations validate observed dissociation pathways. From these, we successfully deduce that the internal energy of the doubly charged molecular ion has a significant contribution to the fragmentation mechanism. Notably, a prominent signature of the internal energy was observed in the experimentally determined energies of the neutral fragment in these deferred charge separation pathways, entailing a more detailed theoretical study to uncover the exact dissociation dynamics.

5.
Phys Chem Chem Phys ; 24(47): 28844-28852, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36422471

RESUMO

Superfluid helium nanodroplets are often considered as transparent and chemically inert nanometer-sized cryo-matrices for high-resolution or time-resolved spectroscopy of embedded molecules and clusters. On the other hand, when the helium nanodroplets are resonantly excited with XUV radiation, a multitude of ultrafast processes are initiated, such as relaxation into metastable states, formation of nanoscopic bubbles or excimers, and autoionization channels generating low-energy free electrons. Here, we discuss the full spectrum of ultrafast relaxation processes observed when helium nanodroplets are electronically excited. In particular, we perform an in-depth study of the relaxation dynamics occurring in the lowest 1s2s and 1s2p droplet bands using high resolution, time-resolved photoelectron spectroscopy. The simplified excitation scheme and improved resolution allow us to identify the relaxation into metastable triplet and excimer states even when exciting below the droplets' autoionization threshold, unobserved in previous studies.

6.
Faraday Discuss ; 228(0): 242-265, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33687396

RESUMO

The acetylene-vinylidene system serves as a benchmark for investigations of ultrafast dynamical processes where the coupling of the electronic and nuclear degrees of freedom provides a fertile playground to explore the femto- and sub-femto-second physics with coherent extreme-ultraviolet (EUV) photon sources both on the table-top as well as free-electron lasers. We focus on detailed investigations of this molecular system in the photon energy range 19-40 eV where EUV pulses can probe the dynamics effectively. We employ photoelectron-photoion coincidence (PEPICO) spectroscopy to uncover hitherto unrevealed aspects of this system. In this work, the role of excited states of the C2H2+ cation, the primary photoion, is specifically addressed. From photoelectron energy spectra and angular distributions, the nature of the dissociation and isomerization channels is discerned. Exploiting the 4π-collection geometry of the velocity map imaging spectrometer, we not only probe pathways where the efficiency of photoionization is inherently high but also perform PEPICO spectroscopy on relatively weak channels.

7.
Phys Chem Chem Phys ; 22(18): 10149-10157, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32347252

RESUMO

Embedded atoms or molecules in a photoexcited He nanodroplet are well-known to be ionized through inter-atomic relaxation in a Penning process. In this work, we investigate the Penning ionization of acetylene oligomers occurring from the photoexcitation bands of He nanodroplets. In close analogy to conventional Penning electron spectroscopy by thermal atomic collisions, the n = 2 photoexcitation band plays the role of the metastable atomic 1s2s 3,1S He*. This facilitates electron spectroscopy of acetylene aggregates in the sub-Kelvin He environment, providing the following insight into their structure: the molecules in the dopant cluster are loosely bound van der Waals complexes rather than forming covalent compounds. In addition, this work reveals a Penning process stemming from the n = 4 band where charge-transfer from autoionized He in the droplets is known to be the dominant relaxation channel. This allows for excited states of the remnant dopant oligomer Penning-ions to be studied. Hence, we demonstrate Penning ionization electron spectroscopy of doped droplets as an effective technique for investigating dopant oligomers which are easily formed by attachment to the host cluster.

8.
Phys Chem Chem Phys ; 22(16): 8557-8564, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32255091

RESUMO

Alkali metal dimers attached to the surface of helium nanodroplets are found to be efficiently doubly ionized by electron transfer mediated decay (ETMD) when photoionizing the helium droplets. This process is evidenced by detecting in coincidence two energetic ions created by Coulomb explosion and one low-kinetic energy electron. The kinetic energy spectra of ions and electrons are reproduced by simple model calculations based on diatomic potential energy curves, and are in agreement with ab initio calculations for the He-Na2 and He-KRb systems. This work demonstrates that ETMD is an important decay channel in heterogeneous nanosystems exposed to ionizing radiation.

9.
J Chem Phys ; 150(4): 044304, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30709284

RESUMO

We present a detailed study of inelastic energy-loss collisions of photoelectrons emitted from He nanodroplets by tunable extreme ultraviolet (XUV) radiation. Using coincidence imaging detection of electrons and ions, we probe the lowest He droplet excited states up to the electron impact ionization threshold. We find significant signal contributions from photoelectrons emitted from free He atoms accompanying the He nanodroplet beam. Furthermore, signal contributions from photoionization and electron impact excitation/ionization occurring in pairs of nearest-neighbor atoms in the He droplets are detected. This work highlights the importance of inelastic electron scattering in the interaction of nanoparticles with XUV radiation.

10.
Opt Lett ; 43(23): 5865-5868, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30499961

RESUMO

We demonstrate for the first time, to the best of our knowledge, Raman random lasing in a continuous-wave (CW) excited, completely biocompatible and biodegradable carrot medium naturally composed of fibrous cellulose scattering medium and rich carotene Raman gain medium. The CW-laser-induced photoluminescence threshold and linewidth analysis at the Stokes modes of carotene show a characteristic lasing action with a threshold of 130 W/cm2 and linewidth narrowing with mode Q factor up to 1300. Polarization study of output modes reveals that lasing mode mostly retains the source polarization state. A neat and interesting linear temperature dependence of emission intensity is also discussed. Easy availability, biocompatibility, excitation-dependent emission wavelength selectivity, and temperature sensitivity are hallmarks of this elegant Raman laser medium with strong potential as an optical source for applications in bio-sensing, imaging, and spectroscopy.


Assuntos
Materiais Biocompatíveis , Lasers , Análise Espectral Raman/métodos , Carotenoides , Daucus carota/química , Química Verde , Temperatura
11.
Opt Lett ; 42(23): 5002-5005, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216166

RESUMO

In this Letter, we report on the design, fabrication, and implementation of a novel plasmon-mode-driven low-threshold near-infrared (NIR) random laser (RL) in the 850-900 nm range based on plasmonic ZnS@Au core-shell scatterers. Plasmon modes in the NIR region are used for nanoscale scatterer engineering of ZnS@Au core-shell particles to enhance scattering, as against pristine ZnS. This plasmonic scattering enhancement coupled with femtosecond (fs) laser pumping is shown to cause a three-fold lasing threshold reduction from 325 µJ/cm2 to 100 µJ/cm2 and a mode Q-factor enhancement from 200 to 540 for ZnS@Au-based RL, as compared to pristine ZnS-based RL. Local field enhancement due to plasmonic ZnS@Au scatterers, as evidenced in the finite-difference time-domain simulation, further adds to this enhancement. This work demonstrates a novel scheme of plasmonic mode coupling in the NIR region and fs excitation in a random laser photonic system, overcoming the inherent deficiencies of weak absorption of gain media and poor scattering cross sections of dielectric scatterers for random lasing in the NIR spectrum.

12.
Physiol Mol Biol Plants ; 23(2): 471-475, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28461734

RESUMO

Somatic embryos were induced from internodal segment derived callus of Oldenlandia umbellata L., in MS medium supplemented with different concentrations of 2,4-Dichlorophenoxy acetic acid (2,4-D). Initially calli were developed from internodes of microshoots inoculated in 2.5 µM NAA supplemented medium. Then calli were transferred to 2,4-D added medium for somatic embryogenesis. Nutritional stress coupled with higher concentration of 2,4-D triggered somatic embryogenesis. Nutritional stress was induced by culturing callus in a fixed amount of medium for a period up to 20 weeks without any external supply of nutrients. Addition of 2.5 µM 2,4-D gave 100% embryogenesis within 16 weeks of incubation. Callus mass bearing somatic embryos were transferred to germination medium facilitated production of in vitro plantlets. MS medium supplemented with 2.5 µM benzyl adenine and 0.5 µM α-naphthalene acetic acid produced 15.33 plants per culture within 4 weeks of culture. Somatic embryo germinated plants were then hardened and transferred to green house.

13.
Phys Rev Lett ; 116(20): 203001, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27258866

RESUMO

We report the observation of electron-transfer-mediated decay (ETMD) involving magnesium (Mg) clusters embedded in helium (He) nanodroplets. ETMD is initiated by the ionization of He followed by removal of two electrons from the Mg clusters of which one is transferred to the He ion while the other electron is emitted into the continuum. The process is shown to be the dominant ionization mechanism for embedded clusters for photon energies above the ionization potential of He. For Mg clusters larger than five atoms we observe stable doubly ionized clusters. Thus, ETMD provides an efficient pathway to the formation of doubly ionized cold species in doped nanodroplets.

14.
Phys Chem Chem Phys ; 16(18): 8168-77, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24654002

RESUMO

In bulk materials, defects are usually considered to be unwanted since deviations from perfect lattices may degrade device performance. Interestingly, the presence of defects throws open new possibilities in the case of nanostructures due to the properties related to their limited size scale. Defects and disorders which alter the electronic structure of nanostructures can significantly influence their electronic, magnetic and nonlinear optical properties. Here, we show that defect engineering is an effective strategy for tailoring the nonlinear optical (NLO) properties of carbon and ZnO nanostructures. The effects of surface states, lattice disorders, polycrystalline interfaces and heterogeneous dopants on the nonlinear absorption behaviour of these nanostructures are discussed in detail. Realistic tunable NLO features achieved by controlling such defects enhance the scope of these nanostructures in device applications such as optical limiting, optical switching, pulse shaping, pulse compression and optical diode action.

15.
Phys Chem Chem Phys ; 16(19): 8721-30, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24695536

RESUMO

In this article we present a perspective on the current state of the art in the photoionization of atomic clusters in few-cycle near-infrared laser pulses. Recently, several studies have reported intriguing phenomena associated with the photoionization of clusters by pulses as short as ~10 fs which approach the natural timescales of collective electronic motion in such nanoscale aggregates. In contrast to the dynamics occurring on few- and sub-picosecond timescales where ionic motion sets in and plays a key role marked by resonant plasmon oscillations, the few-cycle limit precludes cluster expansion due to the nuclear motion of ionic constituents. Thus, pulses lasting just a few optical cycles explore a new "impulsive" regime for the first time in cluster nanoplasmas wherein ions essentially remain "frozen". Along with the perspective on this new regime, we present first measurements of photoelectron distributions and temperatures.

16.
Nano Lett ; 13(12): 5771-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24224861

RESUMO

Nanostructured carbons are posited to offer an alternative to silicon and lead to further miniaturization of photonic and electronic devices. Here, we report the experimental realization of the first all-carbon solid-state optical diode that is based on axially asymmetric nonlinear absorption in a thin saturable absorber (graphene) and a thin reverse saturable absorber (C60) arranged in tandem. This all-optical diode action is polarization independent and has no phase-matching constraints. The nonreciprocity factor of the device can be tuned by varying the number of graphene layers and the concentration or thickness of the C60 coating. This ultracompact graphene/C60 based optical diode is versatile with an inherently large bandwidth, chemical and thermal stability, and is poised for cost-effective large-scale integration with existing fabrication technologies.


Assuntos
Carbono/química , Grafite/química , Nanotubos de Carbono/química , Óptica e Fotônica , Absorção , Nanoestruturas/química , Silício/química
17.
J Chem Phys ; 139(8): 084301, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-24006991

RESUMO

The ionization dynamics of pure He nanodroplets irradiated by Extreme ultraviolet radiation is studied using Velocity-Map Imaging PhotoElectron-PhotoIon COincidence spectroscopy. We present photoelectron energy spectra and angular distributions measured in coincidence with the most abundant ions He(+), He2(+), and He3(+). Surprisingly, below the autoionization threshold of He droplets, we find indications for multiple excitation and subsequent ionization of the droplets by a Penning-like process. At high photon energies we observe inelastic collisions of photoelectrons with the surrounding He atoms in the droplets.

18.
Phys Rev Lett ; 107(17): 173402, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22107516

RESUMO

We demonstrate ultrafast resonant energy absorption of rare-gas doped He nanodroplets from intense few-cycle (~10 fs) laser pulses. We find that less than 10 dopant atoms "ignite" the droplet to generate a nonspherical electronic nanoplasma resulting ultimately in complete ionization and disintegration of all atoms, although the pristine He droplet is transparent for the laser intensities applied. Our calculations at those intensities reveal that the minimal pulse length required for ignition is about 9 fs.

19.
Bone ; 152: 116068, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34166859

RESUMO

Circulating microRNAs (c-miRs) show promise as biomarkers. This systematic review explores their potential association with age-related fracture/osteoporosis (OP), osteoarthritis (OA) and sarcopenia (SP), as well as cross-disease association. Most overlap occurred between OA and OP, suggesting potentially shared microRNA activity. There was little agreement in results across studies. Few reported receiver operating characteristic analysis (ROC) and many identified significant dysregulation in disease, but direction of effect was commonly conflicting. c-miRs with most evidence for consistency in dysregulation included miR-146a, miR-155 and miR-98 for OA (upregulated). Area under the curve (AUC) for miR-146a biomarker performance was AUC 0.92, p = 0.028. miR-125b (AUC 0.76-0.89), miR-100, miR-148a and miR-24 were consistently upregulated in OP. Insufficient evidence exists for c-miRs in SP. Study quality was typically rated intermediate/high risk of bias. Wide study heterogeneity meant meta-analysis was not possible. We provide detailed critique and recommendations for future approaches in c-miR analyses based on this review.


Assuntos
MicroRNA Circulante , MicroRNAs , Osteoartrite , Osteoporose , Sarcopenia , Biomarcadores , Humanos , MicroRNAs/genética , Osteoartrite/genética , Osteoporose/genética , Curva ROC , Sarcopenia/genética
20.
J Phys Chem Lett ; 10(21): 6904-6909, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31625747

RESUMO

Atoms and molecules attached to rare-gas clusters are ionized by an interatomic autoionization process traditionally termed "Penning ionization" when the host cluster is resonantly excited. Here we analyze this process in the light of the interatomic Coulombic decay (ICD) mechanism, which usually contains a contribution from charge exchange at a short interatomic distance and one from virtual photon transfer at a large interatomic distance. For helium (He) nanodroplets doped with alkali metal atoms (Li, Rb), we show that long-range and short-range contributions to the interatomic autoionization can be clearly distinguished by detecting electrons and ions in coincidence. Surprisingly, ab initio calculations show that even for alkali metal atoms floating in dimples at a large distance from the nanodroplet surface, autoionization is largely dominated by charge-exchange ICD. Furthermore, the measured electron spectra manifest the ultrafast internal relaxation of the droplet mainly into the 1s2s1S state and partially into the metastable 1s2s3S state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA