Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Hepatol ; 63(1): 68-74, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25703084

RESUMO

BACKGROUND & AIMS: Inclusion of liver grafts from cardiac death donors (CDD) would increase the availability of donor livers but is hampered by a higher risk of primary non-function. Here, we seek to determine mechanisms that contribute to primary non-function of liver grafts from CDD with the goal to develop strategies for improved function and outcome, focusing on c-Jun-N-terminal kinase (JNK) activation and mitochondrial depolarization, two known mediators of graft failure. METHODS: Livers explanted from wild-type, inducible nitric oxide synthase knockout (iNOS(-/-)), JNK1(-/-) or JNK2(-/-) mice after 45-min aorta clamping were implanted into wild-type recipients. Mitochondrial depolarization was detected by intravital confocal microscopy in living recipients. RESULTS: After transplantation of wild-type CDD livers, graft iNOS expression and 3-nitrotyrosine adducts increased, but hepatic endothelial NOS expression was unchanged. Graft injury and dysfunction were substantially higher in CDD grafts than in non-CDD grafts. iNOS deficiency and inhibition attenuated injury and improved function and survival of CDD grafts. JNK1/2 and apoptosis signal-regulating kinase-1 activation increased markedly in wild-type CDD grafts, which was blunted by iNOS deficiency. JNK inhibition and JNK2 deficiency, but not JNK1 deficiency, decreased injury and improved function and survival of CDD grafts. Mitochondrial depolarization and binding of phospho-JNK2 to Sab, a mitochondrial protein linked to the mitochondrial permeability transition, were higher in CDD than in non-CDD grafts. iNOS deficiency, JNK inhibition and JNK2 deficiency all decreased mitochondrial depolarization and blunted ATP depletion in CDD grafts. JNK inhibition and deficiency did not decrease 3-nitrotyrosine adducts in CDD grafts. CONCLUSION: The iNOS-JNK2-Sab pathway promotes CDD graft failure via increased mitochondrial depolarization, and is an attractive target to improve liver function and survival in CDD liver transplantation recipients.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Sobrevivência de Enxerto , Transplante de Fígado , Fígado/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Apoptose , Morte , Modelos Animais de Doenças , Immunoblotting , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal
2.
J Pharmacol Exp Ther ; 344(2): 417-25, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23161217

RESUMO

Steatotic grafts are excluded for use in partial liver transplantation (LT) because of the increased risk of primary nonfunction. This study investigated the effects of suramin, a polysulfonated naphthylurea, on the outcome of steatotic partial LT. Rat livers were harvested after acute ethanol treatment (6 g/kg, intragastric administration), reduced in size to ≈ 1/3, and transplanted. Serum alanine aminotransferase (ALT) and total bilirubin levels as well as hepatic necrosis and apoptosis were significantly higher after transplantation of fatty partial grafts (FPG) than lean partial grafts (LPG). Suramin (5 mg/kg, i.p.) decreased ALT by ≈ 60%, hyperbilirubinemia by 75%, necrosis by 83%, and apoptosis by 70% after FPG transplantation. Hepatic cellular 5-bromo-2'-deoxyuridine (BrdU) incorporation increased to 28% in LPG but was only 2% in FPG at 48 hours, and the mitotic index increased to 7% in LPG but was only 0.2% in FPG, indicating suppressed regeneration in FPG. Suramin increased BrdU incorporation and the mitotic index to 43% and 9%, respectively, in FPG. All FPG recipients died within 5 days. Suramin recovered survival of FPG to 62%. Tumor necrosis factor-α (TNF-α) mRNA was 2.2-fold higher in FPG than in LPG and was associated with activation of caspase-8 and caspase-3 in FPG. Suramin decreased TNF-α and caspase activation in FPG. Transforming growth factor-ß (TGF-ß), phospho-Smad2/3 and p21Cip1 were significantly higher in FPG than in LPG and suramin blocked TGF-ß formation and its down-stream signaling pathway. Taken together, suramin improves the outcome of FPG transplantation, most likely by inhibition of TNF-α and TGF-ß formation.


Assuntos
Etanol/farmacologia , Fígado Gorduroso Alcoólico/cirurgia , Sobrevivência de Enxerto/efeitos dos fármacos , Regeneração Hepática/efeitos dos fármacos , Transplante de Fígado , Fígado/efeitos dos fármacos , Suramina/uso terapêutico , Animais , Fígado Gorduroso Alcoólico/tratamento farmacológico , Fígado Gorduroso Alcoólico/patologia , Feminino , Fígado/patologia , Fígado/cirurgia , Testes de Função Hepática , Transplante de Fígado/métodos , Tamanho do Órgão , Ratos , Ratos Endogâmicos Lew , Suramina/administração & dosagem
3.
RPS Pharm Pharmacol Rep ; 2(2): rqad013, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37092117

RESUMO

Objectives: Some histone deacetylase (HDAC) isoforms contribute to ischaemia/reperfusion (IR) injury (IRI). Here, we examined whether LP342, the lead candidate of a new generation of hydrazide-based HDAC inhibitors (HDACi), decreases hepatic IRI. Methods: IR was induced by clamping blood vessels to ~70% of the livers of mice for 1 h. Key findings: At 6 h after reperfusion, ALT markedly increased, and wide-spread necrosis, leukocyte infiltration, and apoptosis occurred. LP342 treatment (1 mg/kg, ip) at 20 h or 1 h before ischaemia markedly decreased IRI whereas LP342 treatment upon reperfusion was marginally protective. Nitro-oxidative stress, c-Jun-N-terminal kinase (JNK) activation, and mitochondrial dysfunction contribute to IRI. 4-Hydroxynonenal, 3-nitrotyrosine, inducible nitric oxide synthase (iNOS), JNK activation and Sab binding increased markedly after IR, which LP342 blunted. LP342 also induced thioredoxin-1 expression before and after IR. LP342 also decreased mitochondrial depolarisation as detected by intravital microscopy at 2 h after IR. Lastly, LP342 increased acetylation of both histone-3 (class I HDAC substrate) and NFκB p65 but not tubulin (class II HDAC substrate) before and after IR. Conclusions: This novel HDACi protects against IRI most likely by epigenetic upregulation of antioxidant proteins and post-translational modifications of NFκB thus inhibiting iNOS expression and inflammatory responses.

4.
J Hepatol ; 56(1): 137-45, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21756852

RESUMO

BACKGROUND & AIMS: The mitochondrial permeability transition (MPT) and inflammation play important roles in liver injury caused by ischemia-reperfusion (IR). This study investigated the roles of sphingosine kinase-2 (SK2) in mitochondrial dysfunction and inflammation after hepatic IR. METHODS: Mice were gavaged with vehicle or ABC294640 (50 mg/kg), a selective inhibitor of SK2, 1 h before surgery and subjected to 1 h-warm ischemia to ~70% of the liver followed by reperfusion. RESULTS: Following IR, hepatic SK2 mRNA and sphingosine-1-phosphate (S1P) levels increased ~25- and 3-fold, respectively. SK2 inhibition blunted S1P production and liver injury by 54-91%, and increased mouse survival from 28% to 100%. At 2 h after reperfusion, mitochondrial depolarization was observed in 74% of viable hepatocytes, and mitochondrial voids excluding calcein disappeared, indicating MPT onset in vivo. SK2 inhibition decreased mitochondrial depolarization and prevented MPT onset. Inducible nitric oxide synthase, phosphorylated NFκB-p65, TNFα mRNA, and neutrophil infiltration, all increased markedly after hepatic IR, and these increases were blunted by SK2 inhibition. In cultured hepatocytes, anoxia/re-oxygenation resulted in increases of SK2 mRNA, S1P levels, and cell death. SK2 siRNA and ABC294640 each substantially decreased S1P production and cell death in cultured hepatocytes. CONCLUSIONS: SK2 plays an important role in mitochondrial dysfunction, inflammation responses, hepatocyte death, and survival after hepatic IR and represents a new target for the treatment of IR injury.


Assuntos
Fígado/enzimologia , Fígado/lesões , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Traumatismo por Reperfusão/enzimologia , Adamantano/análogos & derivados , Adamantano/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Técnicas de Silenciamento de Genes , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Técnicas In Vitro , Inflamação/enzimologia , Inflamação/genética , Fígado/efeitos dos fármacos , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Masculino , Camundongos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/enzimologia , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Óxido Nítrico Sintase Tipo II/metabolismo , Piridinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina/farmacologia
5.
Autophagy ; 18(11): 2671-2685, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35293288

RESUMO

Ethanol increases hepatic mitophagy driven by unknown mechanisms. Type 1 mitophagy sequesters polarized mitochondria for nutrient recovery and cytoplasmic remodeling. In Type 2, mitochondrial depolarization (mtDepo) initiates mitophagy to remove the damaged organelles. Previously, we showed that acute ethanol administration produces reversible hepatic mtDepo. Here, we tested the hypothesis that ethanol-induced mtDepo initiates Type 2 mitophagy. GFP-LC3 transgenic mice were gavaged with ethanol (2-6 g/kg) with and without pre-treatment with agents that decrease or increase mtDepo-Alda-1, tacrolimus, or disulfiram. Without ethanol, virtually all hepatocytes contained polarized mitochondria with infrequent autophagic GFP-LC3 puncta visualized by intravital microscopy. At ~4 h after ethanol treatment, mtDepo occurred in an all-or-none fashion within individual hepatocytes, which increased dose dependently. GFP-LC3 puncta increased in parallel, predominantly in hepatocytes with mtDepo. Mitochondrial PINK1 and PRKN/parkin also increased. After covalent labeling of mitochondria with MitoTracker Red (MTR), GFP-LC3 puncta encircled MTR-labeled mitochondria after ethanol treatment, directly demonstrating mitophagy. GFP-LC3 puncta did not associate with fat droplets visualized with BODIPY558/568, indicating that increased autophagy was not due to lipophagy. Before ethanol administration, rhodamine-dextran (RhDex)-labeled lysosomes showed little association with GFP-LC3. After ethanol treatment, TFEB (transcription factor EB) translocated to nuclei, and lysosomal mass increased. Many GFP-LC3 puncta merged with RhDex-labeled lysosomes, showing autophagosomal processing into lysosomes. After ethanol treatment, disulfiram increased, whereas Alda-1 and tacrolimus decreased mtDepo, and mitophagy changed proportionately. In conclusion, mtDepo after acute ethanol treatment induces mitophagic sequestration and subsequent lysosomal processing.Abbreviations : AcAld, acetaldehyde; ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase; ALD, alcoholic liver disease; Alda-1, N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFP, green fluorescent protein; LAMP1, lysosomal-associated membrane protein 1; LMNB1, lamin B1; MAA, malondialdehyde-acetaldehyde adducts; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; MPT, mitochondrial permeability transition; mtDAMPS, mitochondrial damage-associated molecular patterns; mtDepo, mitochondrial depolarization; mtDNA, mitochondrial DNA; MTR, MitoTracker Red; PI, propidium iodide; PINK1, PTEN induced putative kinase 1; PRKN, parkin; RhDex, rhodamine dextran; TFEB, transcription factor EB; Tg, transgenic; TMRM, tetramethylrhodamine methylester; TOMM20, translocase of outer mitochondrial membrane 20; VDAC, voltage-dependent anion channel.


Assuntos
Etanol , Mitofagia , Camundongos , Animais , Mitofagia/genética , Etanol/farmacologia , Etanol/metabolismo , Dissulfiram , Tacrolimo , Autofagia , Ubiquitina-Proteína Ligases/metabolismo , DNA Mitocondrial , Proteínas Quinases/metabolismo , Acetaldeído
6.
Artigo em Inglês | MEDLINE | ID: mdl-31777643

RESUMO

The pathogenesis of non-alcoholic steatohepatitis (NASH) is poorly understood. Here, relationships between mitochondrial depolarization (mtDepo) and mitochondrial homeostasis were studied in a mouse model of NASH. C57BL/6 mice were fed a Western diet (high fat, fructose and cholesterol) for 2 weeks, 2 months and 6 months, and livers were harvested for histology and biochemical analysis. Hepatic mtDepo was evaluated by intravital multiphoton microscopy. After Western diet feeding, mixed hepatic micro- and macrovesicular steatosis and leukocyte infiltration occurred at 2 weeks and continued to increase afterwards. ALT release, mild necrosis, apoptosis, and ballooning degeneration were present at 2 and 6 months. Smooth muscle α-actin expression increased at 2 weeks and longer, and increased collagen-I expression and mild fibrosis occurred at 6 months. After feeding Western diet for 2 weeks and longer, mtDepo appeared in 50-70% hepatocytes, indicating mitochondrial dysfunction at an early stage of NASH. mtDepo can initiate mitophagy, and mitophagic markers increased at 2 and 6 months. Concurrently autophagic processing became impaired. Oxidative phosphorylation proteins, mitochondrial biogenesis signals, and proteins associated with mitochondrial fission and fusion decreased after 2 months and longer of Western diet. Proinflammatory and profibrotic signaling (NLRP3 inflammasome activation, expression of IL-1, osteopontin and TGF-ß1) also increased in association with mitochondrial stress/dysfunction after Western diet feeding. Taken together, we show that hepatic mtDepo occurs early in mice fed a Western diet, followed by increased mitophagic burden, suppressed mitochondrial biogenesis and dynamics, and mitochondrial depletion. These novel mitochondrial alterations in NASH most likely play an important role in promoting steatosis, inflammation, and progression to fibrosis.

7.
Artigo em Inglês | MEDLINE | ID: mdl-29755641

RESUMO

Pulmonary complications frequently occur after liver transplantation and are often life-threatening. Thus, we investigated whether hepatic ischemic preconditioning (IP) attenuates acute lung injury (ALI) after small-for-size liver transplantation. Rat livers were explanted after 9-min ischemia plus 5-min reperfusion, reduced to 50% of original size ex vivo, and implanted into recipients with approximately twice the donor body weight, resulting in quarter-size liver grafts (QSG). After QSG transplantation, hepatic Toll-like receptor 4 (TLR4) and tumor necrosis factor-α (TNFα ) expression increased markedly and high mobility group box-1 (HMGB1), an endogenous damage-associated molecular pattern molecule (DAMP), was released from QSG into the blood. IP blunted TLR4 and TNFα expression and HMGB1 release from QSG. In the lungs of QSG recipients without IP treatment, nuclear factor-κB (NF-κB) activation and intercellular adhesion molecule (ICAM)-1 expression increased; alveolar septal walls thickened with increased cellularity as neutrophils, monocytes/macrophage and T lymphocytes infiltrated into alveolar septa and alveolar spaces; and pulmonary cleaved caspase-8 and -3 and TUNEL-positive cells increased. In contrast, in the lungs of recipients of ischemic-preconditioned QSG, NF-κB activation and ICAM-1 expression were blunted; leukocyte infiltration was decreased; and alveolar septal wall thickening, caspase activation, and cell apoptosis were attenuated. IP did not increase heat-shock proteins in the lungs of QSG recipients. In conclusion, toxic cytokine and HMGB1 released from failing small-for-size grafts leads to pulmonary adhesion molecule expression, leukocyte infiltration and injury. IP prevents DAMP release and toxic cytokine formation in small-for-size grafts, thereby attenuating ALI.

8.
Artigo em Inglês | MEDLINE | ID: mdl-28694919

RESUMO

Permeant cGMP analogs prevent the mitochondria permeability transition (MPT) in vitro. In this study, we explored whether 8-pCPT-cGMP prevents the MPT and decreases post-transplant damage to fatty partial liver grafts (FPG) in vivo. Rats were fed a control or high-fat, high-fructose diet for 2-week. Lean and fatty liver explants were reduced in size ex vivo to ~35% and stored in the University of Wisconsin solution with and without 8-pCPT-cGMP (300 µM) for 2 h. After transplantation, alanine aminotransferase release (indicator of hepatocellular injury), hyperbilirubinemia (indicator of poor liver function), and cell death were all higher in FPG than in lean partial grafts (LPG). Liver regeneration increased in LPG but was suppressed in FPG. 8-pCPT-cGMP blunted graft injury, improved liver regeneration and function, and increased survival of FPG. Hepatic mitochondrial depolarization detected by intravital multiphoton microscopy of rhodamine 123 in living rats was ~3.5-fold higher in FPG than in LPG. 8-pCPT-cGMP decreased mitochondrial depolarization in FPG almost to the level of LPG. Activation of mammalian target of rapamycin (mTOR), an energy sensitive kinase that stimulates cell proliferation and growth, and p70S6 kinase, a downstream signaling molecule of mTOR, was increased in LPG but suppressed in FPG. 8-pCPT-cGMP restored the activity of mTOR and p70S6 kinase in FPG. 8-pCPT-cGMP also increased activation of cAMP response element-binding protein (CREB) and expression of cyclins D1 and E in FPG. Non-alcoholic steatosis increases injury and suppresses regeneration after partial liver transplantation, at least in part, due to more severe mitochondrial dysfunction. Protection of mitochondria with a cGMP analog effectively improves outcomes of FPG transplantation.

9.
PLoS One ; 11(9): e0163342, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27676640

RESUMO

BACKGROUND AND AIM: Because ethanol consumption is commonly associated with a high cholesterol diet, we examined whether combined consumption of ethanol and high cholesterol increases liver injury and fibrosis. METHODS: Male C57BL/6J mice were fed diets containing: 1) 35% of calories from corn oil (CTR), 2) CTR plus 0.5% (w/v) cholesterol (Chol), 3) CTR plus ethanol (27% of calories) (EtOH), or 4) EtOH+Chol for 3 months. RESULTS: In mice fed Chol or EtOH alone, ALT increased to ~160 U/L, moderate hepatic steatosis occurred, and leukocyte infiltration, necrosis, and apoptosis increased modestly, but no observable fibrosis developed. By contrast in mice fed EtOH+Chol, ALT increased to ~270 U/L, steatosis was more extensive and mostly macrovesicular, and expression of proinflammatory molecules (HMGB-1, TLR4, TNFα, ICAM-1) and leukocyte infiltration increased substantially. Necrosis and apoptosis also increased. Trichrome staining and second harmonic generation microscopy revealed hepatic fibrosis. Fibrosis was mostly sinusoidal and/or perivenular, but in some mice bridging fibrosis occurred. Expression of smooth muscle α-actin and TGF-ß1 increased slightly by Chol, moderately by EtOH, and markedly by EtOH+Chol. TGF-ß pseudoreceptor BAMBI increased slightly by Chol, remained unchanged by EtOH and decreased by EtOH+Chol. MicroRNA-33a, which enhances TGF-ß fibrotic effects, and phospho-Smad2/3, the down-stream signal of TGF-ß, also increased more greatly by EtOH+Chol than Chol or EtOH. Metalloproteinase-2 and -9 were decreased only by EtOH+Chol. CONCLUSION: High dietary cholesterol and chronic ethanol consumption synergistically increase liver injury, inflammation, and profibrotic responses and suppress antifibrotic responses, leading to severe steatohepatitis and early fibrosis in mice.

10.
Artigo em Inglês | MEDLINE | ID: mdl-27186319

RESUMO

Oxidative stress plays an essential role in liver fibrosis. This study investigated whether MitoQ, an orally active mitochondrial antioxidant, decreases liver fibrosis. Mice were injected with corn oil or carbon tetrachloride (CCl4, 1:3 dilution in corn oil; 1 µl/g, ip) once every 3 days for up to 6 weeks. 4-Hydroxynonenal adducts increased markedly after CCl4 treatment, indicating oxidative stress. MitoQ attenuated oxidative stress after CCl4. Collagen 1α1 mRNA and hydroxyproline increased markedly after CCl4 treatment, indicating increased collagen formation and deposition. CCl4 caused overt pericentral fibrosis as revealed by both the sirius red staining and second harmonic generation microscopy. MitoQ blunted fibrosis after CCl4. Profibrotic transforming growth factor-ß1 (TGF-ß1) mRNA and expression of smooth muscle α-actin, an indicator of hepatic stellate cell (HSC) activation, increased markedly after CCl4 treatment. Smad 2/3, the major mediator of TGF-ß fibrogenic effects, was also activated after CCl4 treatment. MitoQ blunted HSC activation, TGF-ß expression, and Smad2/3 activation after CCl4 treatment. MitoQ also decreased necrosis, apoptosis and inflammation after CCl4 treatment. In cultured HSCs, MitoQ decreased oxidative stress, inhibited HSC activation, TGF-ß1 expression, Smad2/3 activation, and extracellular signal-regulated protein kinase activation. Taken together, these data indicate that mitochondrial reactive oxygen species play an important role in liver fibrosis and that mitochondria-targeted antioxidants are promising potential therapies for prevention and treatment of liver fibrosis.

11.
PLoS One ; 10(10): e0140906, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26480480

RESUMO

BACKGROUND: Suppressed mitochondrial biogenesis (MB) contributes to acute kidney injury (AKI) after many insults. AKI occurs frequently after liver transplantation (LT) and increases mortality. This study investigated whether disrupted mitochondrial homeostasis plays a role in AKI after LT. METHODS: Livers were explanted from Lewis rats and implanted after 18 h cold storage. Kidney and blood were collected 18 h after LT. RESULTS: In the kidney, oxidative phosphorylation (OXPHOS) proteins ATP synthase-ß and NADH dehydrogenase-3 decreased 44% and 81%, respectively, with marked reduction in associated mRNAs. Renal PGC-1α, the major regulator of MB, decreased 57% with lower mRNA and increased acetylation, indicating inhibited synthesis and suppressed activation. Mitochondrial transcription factor-A, which controls mtDNA replication and transcription, protein and mRNA decreased 66% and 68%, respectively, which was associated with 64% decreases in mtDNA. Mitochondrial fission proteins Drp-1 and Fis-1 and mitochondrial fusion protein mitofusin-1 all decreased markedly. In contrast, PTEN-induced putative kinase 1 and microtubule-associated protein 1A/1B-light chain 3 increased markedly after LT, indicating enhanced mitophagy. Concurrently, 18- and 13-fold increases in neutrophil gelatinase-associated lipocalin and cleaved caspase-3 occurred in renal tissue. Both serum creatinine and blood urea nitrogen increased >2 fold. Mild to moderate histological changes were observed in the kidney, including loss of brush border, vacuolization of tubular cells in the cortex, cast formation and necrosis in some proximal tubular cells. Finally, myeloperoxidase and ED-1 also increased, indicating inflammation. CONCLUSION: Suppression of MB, inhibition of mitochondrial fission/fusion and enhancement of mitophagy occur in the kidneys of recipients of liver grafts after long cold storage, which may contribute to the occurrence of AKI and increased mortality after LT.


Assuntos
Homeostase , Rim/patologia , Transplante de Fígado/efeitos adversos , Mitocôndrias/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Animais , Rim/fisiopatologia , Masculino , Dinâmica Mitocondrial , Mitofagia , Biogênese de Organelas , Fosforilação Oxidativa , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
PLoS One ; 9(3): e91308, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24618581

RESUMO

BACKGROUND/AIMS: An increase of ethanol metabolism and hepatic mitochondrial respiration occurs in vivo after a single binge of alcohol. Here, our aim was to determine how ethanol intake affects hepatic mitochondrial polarization status in vivo in relation to ethanol metabolism and steatosis. METHODS: Hepatic mitochondrial polarization, permeability transition (MPT), and reduce pyridine nucleotides, and steatosis in mice were monitored by intravital confocal/multiphoton microscopy of the fluorescence of rhodamine 123 (Rh123), calcein, NAD(P)H, and BODIPY493/503, respectively, after gavage with ethanol (1-6 g/kg). RESULTS: Mitochondria depolarized in an all-or-nothing fashion in individual hepatocytes as early as 1 h after alcohol. Depolarization was dose- and time-dependent, peaked after 6 to 12 h and maximally affected 94% of hepatocytes. This mitochondrial depolarization was not due to onset of the MPT. After 24 h, mitochondria of most hepatocytes recovered normal polarization and were indistinguishable from untreated after 7 days. Cell death monitored by propidium iodide staining, histology and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was low throughout. After alcohol, mitochondrial NAD(P)H autofluorescence increased and decreased, respectively, in hepatocytes with polarized and depolarized mitochondria. Ethanol also caused steatosis mainly in hepatocytes with depolarized mitochondria. Depolarization was linked to ethanol metabolism, since deficiency of alcohol dehydrogenase and cytochrome-P450 2E1 (CYP2E1), the major ethanol-metabolizing enzymes, decreased mitochondrial depolarization by ∼ 70% and ∼ 20%, respectively. Activation of aldehyde dehydrogenase decreased depolarization, whereas inhibition of aldehyde dehydrogenase enhanced depolarization. Activation of aldehyde dehydrogenase also markedly decreased steatosis. CONCLUSIONS: Acute ethanol causes reversible hepatic mitochondrial depolarization in vivo that may contribute to steatosis and increased mitochondrial respiration. Onset of this mitochondrial depolarization is linked, at least in part, to metabolism of ethanol to acetaldehyde.


Assuntos
Etanol/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Trifosfato de Adenosina/metabolismo , Álcool Desidrogenase/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Dose-Resposta a Droga , Etanol/farmacologia , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Membranas Intracelulares/metabolismo , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/efeitos dos fármacos , Estresse Oxidativo , Permeabilidade
13.
PLoS One ; 8(6): e65029, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23755172

RESUMO

Our previous studies showed that an extract from Camellia sinenesis (green tea), which contains several polyphenols, attenuates nephrotoxicity caused by cyclosporine A (CsA). Since polyphenols are stimulators of mitochondrial biogenesis (MB), this study investigated whether stimulation of MB plays a role in green tea polyphenol protection against CsA renal toxicity. Rats were fed a powdered diet containing green tea polyphenolic extract (0.1%) starting 3 days prior to CsA treatment (25 mg/kg, i.g. daily for 3 weeks). CsA alone decreased renal nuclear DNA-encoded oxidative phosphorylation (OXPHOS) protein ATP synthase-ß (AS-ß) by 42%, mitochondrial DNA (mtDNA)-encoded OXPHOS protein NADH dehydrogenase-3 (ND3) by 87% and their associated mRNAs. Mitochondrial DNA copy number was also decreased by 78% by CsA. Immunohistochemical analysis showed decreased cytochrome c oxidase subunit IV (COX-IV), an OXPHOS protein, in tubular cells. Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, the master regulator of MB, and mitochondrial transcription factor-A (Tfam), the transcription factor that regulates mtDNA replication and transcription, were 42% and 90% lower, respectively, in the kidneys of CsA-treated than in untreated rats. These results indicate suppression of MB by chronic CsA treatment. Green tea polyphenols alone and following CsA increased AS-ß, ND3, COX-IV, mtDNA copy number, PGC-1α mRNA and protein, decreased acetylated PGC-1α, and increased Tfam mRNA and protein. In association with suppressed MB, CsA increased serum creatinine, caused loss of brush border and dilatation of proximal tubules, tubular atrophy, vacuolization, apoptosis, calcification, and increased neutrophil gelatinase-associated lipocalin expression, leukocyte infiltration, and renal fibrosis. Green tea polyphenols markedly attenuated CsA-induced renal injury and improved renal function. Together, these results demonstrate that green tea polyphenols attenuate CsA-induced kidney injury, at least in part, through the stimulation of MB.


Assuntos
Ciclosporina/farmacologia , Rim/metabolismo , Rim/fisiopatologia , Renovação Mitocondrial/efeitos dos fármacos , Polifenóis/farmacologia , Chá/química , Animais , DNA Mitocondrial/genética , Proteínas de Ligação a DNA , Dieta , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Dosagem de Genes , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/patologia , Nefropatias/fisiopatologia , Testes de Função Renal , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fosforilação Oxidativa , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
PLoS One ; 7(7): e41834, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848628

RESUMO

Inflammation mediates/promotes graft injury after liver transplantation (LT). This study investigated the roles of sphingosine kinase-2 (SK2) in inflammation after LT. Liver grafts were stored in UW solution with and without ABC294640 (100 µM), a selective inhibitor of SK2, before implantation. Hepatic sphingosine-1-phosphate (S1P) levels increased ∼4-fold after LT, which was blunted by 40% by ABC294640. Hepatic toll-like receptor-4 (TLR4) expression and nuclear factor-κB (NF-κB) p65 subunit phosphorylation elevated substantially after transplantation. The pro-inflammatory cytokines/chemokines tumor necrosis factor-α, interleukin-1ß and C-X-C motif chemokine 10 mRNAs increased 5.9-fold, 6.1-fold and 16-fold, respectively following transplantation, while intrahepatic adhesion molecule-1 increased 5.7-fold and monocytes/macrophage and neutrophil infiltration and expansion of residential macrophage population increased 7.8-13.4 fold, indicating enhanced inflammation. CD4+ T cell infiltration and interferon-γ production also increased. ABC294640 blunted TLR4 expression by 60%, NF-κB activation by 84%, proinflammatory cytokine/chemokine production by 45-72%, adhesion molecule expression by 54% and infiltration of monocytes/macrophages and neutrophils by 62-67%. ABC294640 also largely blocked CD4+ T cell infiltration and interferon-γ production. Focal necrosis and apoptosis occurred after transplantation with serum alanine aminotransferase (ALT) reaching ∼6000 U/L and serum total bilirubin elevating to ∼1.5 mg/dL. Inhibition of SK2 by ABC294640 blunted necrosis by 57%, apoptosis by 74%, ALT release by ∼68%, and hyperbilirubinemia by 74%. Most importantly, ABC294640 also increased survival from ∼25% to ∼85%. In conclusion, SK2 plays an important role in hepatic inflammation responses and graft injury after cold storage/transplantation and represents a new therapeutic target for liver graft failure.


Assuntos
Adamantano/análogos & derivados , Inibidores Enzimáticos/farmacologia , Transplante de Fígado/efeitos adversos , Fígado/efeitos dos fármacos , Fígado/lesões , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Piridinas/farmacologia , Adamantano/farmacologia , Adamantano/uso terapêutico , Animais , Moléculas de Adesão Celular/metabolismo , Quimiocinas/genética , Inibidores Enzimáticos/uso terapêutico , Inflamação/tratamento farmacológico , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Fígado/metabolismo , Fígado/fisiopatologia , Lisofosfolipídeos/biossíntese , Masculino , NF-kappa B/metabolismo , Piridinas/uso terapêutico , Ratos , Ratos Endogâmicos Lew , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Esfingosina/análogos & derivados , Esfingosina/biossíntese , Receptor 4 Toll-Like/metabolismo , Regulação para Cima/efeitos dos fármacos
15.
Free Radic Biol Med ; 53(2): 250-9, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22609250

RESUMO

This study investigated the role of inducible nitric oxide synthase (iNOS) in failure of ethanol-induced fatty liver grafts. Rat livers were explanted 20 h after gavaging with ethanol (5 g/kg) and storing in UW solution for 24h before implantation. Hepatic oil red O staining-positive areas increased from ∼2 to ∼33% after ethanol treatment, indicating steatosis. iNOS expression increased ∼8-fold after transplantation of lean grafts (LG) and 25-fold in fatty grafts (FG). Alanine aminotransferase release, total bilirubin, hepatic necrosis, TUNEL-positive cells, and cleaved caspase-3 were higher in FG than LG. A specific iNOS inhibitor 1400W (5 µM in the cold-storage solution) blunted these alterations by >42% and increased survival of fatty grafts from 25 to 88%. Serum nitrite/nitrate and hepatic nitrotyrosine adducts increased to a greater extent after transplantation of FG than LG, indicating reactive nitrogen species (RNS) overproduction. Phospho-c-Jun and phospho-c-Jun N-terminal kinase-1/2 (JNK1/2) were higher in FG than in LG, indicating more JNK activation in fatty grafts. RNS formation and JNK activation were blunted by 1400W. Mitochondrial polarization and cell death were visualized by intravital multiphoton microscopy of rhodamine 123 and propidium iodide, respectively. After implantation, viable cells with depolarized mitochondria were 3-fold higher in FG than in LG and 1400W decreased mitochondrial depolarization in FG to the levels of LG. Taken together, iNOS is upregulated after transplantation of FG, leading to excessive RNS formation, JNK activation, mitochondrial dysfunction, and severe graft injury. The iNOS inhibitor 1400W could be an effective therapy for primary nonfunction of fatty liver grafts.


Assuntos
Fígado Gorduroso/patologia , Fígado Gorduroso/cirurgia , Sobrevivência de Enxerto/efeitos dos fármacos , Transplante de Fígado , Mitocôndrias/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Adenosina/química , Adenosina/farmacologia , Alanina Transaminase/análise , Alopurinol/química , Alopurinol/farmacologia , Amidinas/farmacologia , Animais , Benzilaminas/farmacologia , Bilirrubina/sangue , Caspase 3/genética , Caspase 3/metabolismo , Etanol , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/enzimologia , Feminino , Expressão Gênica/efeitos dos fármacos , Glutationa/química , Glutationa/farmacologia , Insulina/química , Insulina/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Nitratos/sangue , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Nitritos/sangue , Soluções para Preservação de Órgãos/química , Soluções para Preservação de Órgãos/farmacologia , Rafinose/química , Rafinose/farmacologia , Ratos , Ratos Endogâmicos Lew , Espécies Reativas de Nitrogênio/antagonistas & inibidores , Espécies Reativas de Nitrogênio/sangue , Tirosina/análogos & derivados , Tirosina/antagonistas & inibidores , Tirosina/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA