Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 19(4): 2478-2488, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30884235

RESUMO

Although biosensors based on nanowires-field effect transistor were proved extraordinarily efficient in fundamental applications, screening of charges due to the high-ionic strength of most physiological solutions imposes severe limitations in the design of smart, "real-time" sensors, as the biosample solution has to be previously desalted. This work describes the development of a novel nanowire biosensor that performs extracellular real-time multiplex sensing of small molecular metabolites, the true indicators of the body's chemistry machinery, without any preprocessing of the biosample. Unlike other nanoFET devices that follow direct binding of analytes to their surfaces, our nanodevice acts by sensing the oxidation state of redox-reactive chemical species bound to its surface. The device's surface array is chemically modified with a reversible redox molecular system that is sensitive to H2O2 down to 100 nM, coupled with a suite of corresponding oxidase enzymes that convert target metabolites to H2O2, enabling the direct prompt analysis of complex biosamples. This modality was successfully demonstrated for the real-time monitoring of cancer cell samples' metabolic activity and evaluating chemotherapeutic treatment options for cancer. This distinctive system displays ultrasensitive, selective, noninvasive, multiplex, real-time, label-free, and low-cost sensing of small molecular metabolites in ultrasmall volumes of complex biosamples, in the single-microliter scale, placing our technology at the forefront of this cutting-edge field.


Assuntos
Técnicas Biossensoriais/métodos , Metabolômica/métodos , Neoplasias/metabolismo , Oxirredução , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio/metabolismo , Dispositivos Lab-On-A-Chip , Nanofios/química , Neoplasias/diagnóstico , Neoplasias/patologia , Oxirredutases/química , Propriedades de Superfície , Transistores Eletrônicos
2.
Nano Lett ; 19(9): 5868-5878, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31381354

RESUMO

The analysis of biosamples, e.g., blood, is a ubiquitous task of proteomics, genomics, and biosensing fields; yet, it still faces multiple challenges, one of the greatest being the selective separation and detection of target proteins from these complex biosamples. Here, we demonstrate the development of an on-chip light-triggered reusable nanostructured selective and quantitative protein separation and preconcentration platform for the direct analysis of complex biosamples. The on-chip selective separation of required protein analytes from raw biosamples is performed using antibody-photoacid-modified Si nanopillars vertical arrays (SiNPs) of ultralarge binding surface area and enormously high binding affinity, followed by the light-controlled rapid release of the tightly bound target proteins in a controlled liquid media. Two important experimental observations are presented: (1) the first demonstration on the control of biological reaction binding affinity by the nanostructuring of the capturing surface, leading to highly efficient protein collection capabilities, and (2) the light-triggered switching of the highly sticky binding surfaces into highly reflective nonbinding surfaces, leading to the rapid and quantitative release of the originally tightly bound protein species. Both of these two novel behaviors were theoretically and experimentally investigated. Importantly, this is the first demonstration of a three-dimensional (3D) SiNPs on-chip filter with ultralarge binding surface area and reversible light-controlled quantitative release of adsorbed biomolecules for direct purification of blood samples, able to selectively collect and separate specific low abundant proteins, while easily removing unwanted blood components (proteins, cells) and achieving desalting results, without the requirement of time-consuming centrifugation steps, the use of desalting membranes, or affinity columns.


Assuntos
Proteínas Sanguíneas/isolamento & purificação , Dispositivos Lab-On-A-Chip , Nanoestruturas/química , Proteínas Sanguíneas/química , Humanos , Luz , Ligação Proteica/efeitos da radiação , Silício/química , Propriedades de Superfície
3.
FASEB J ; : fj201701568R, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856660

RESUMO

Glioblastoma is an aggressive and invasive brain malignancy with high mortality rates despite current treatment modalities. In this study, we show that a 7-gene signature, previously found to govern the switch of glioblastomas from dormancy to aggressive tumor growth, correlates with improved overall survival of patients with glioblastoma. Using glioblastoma dormancy models, we validated the role of 2 genes from the signature, thrombospondin-1 ( TSP-1) and epidermal growth factor receptor ( EGFR), as regulators of glioblastoma dormancy and explored their therapeutic potential. EGFR up-regulation was reversed using EGFR small interfering RNA polyplex, antibody, or small-molecule inhibitor. The diminished function of TSP-1 was augmented via a peptidomimetic. The combination of EGFR inhibition and TSP-1 restoration led to enhanced therapeutic efficacy in vitro, in 3-dimensional patient-derived spheroids, and in a subcutaneous human glioblastoma model in vivo. Systemic administration of the combination therapy to mice bearing intracranial murine glioblastoma resulted in marginal therapeutic outcomes, probably due to brain delivery challenges, p53 mutation status, and the aggressive nature of the selected cell line. Nevertheless, this study provides a proof of concept for exploiting regulators of tumor dormancy for glioblastoma therapy. This therapeutic strategy can be exploited for future investigations using a variety of therapeutic entities that manipulate the expression of dormancy-associated genes in glioblastoma as well as in other cancer types.-Tiram, G., Ferber, S., Ofek, P., Eldar-Boock, A., Ben-Shushan, D., Yeini, E., Krivitsky, A., Blatt, R., Almog, N., Henkin, J., Amsalem, O., Yavin, E., Cohen, G., Lazarovici, P., Lee, J. S., Ruppin, E., Milyavsky, M., Grossman, R., Ram, Z., Calderón, M., Haag, R., Satchi-Fainaro, R. Reverting the molecular fingerprint of tumor dormancy as a therapeutic strategy for glioblastoma.

4.
Nanomedicine ; 14(2): 303-315, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29127036

RESUMO

RNAi therapeutics carried a great promise to the area of personalized medicine: the ability to target "undruggable" oncogenic pathways. Nevertheless, their efficient tumor targeting via systemic administration had not been resolved yet. Amphiphilic alkylated poly(α)glutamate amine (APA) can serve as a cationic carrier to the negatively-charged oligonucleotides. APA polymers complexed with siRNA to form round-shaped, homogenous and reproducible nano-sized polyplexes bearing ~50 nm size and slightly negative charge. In addition, APA:siRNA polyplexes were shown to be potent gene regulators in vitro. In light of these preferred physico-chemical characteristics, their performance as systemically-administered siRNA nanocarriers was investigated. Intravenously-injected APA:siRNA polyplexes accumulated selectively in tumors and did not accumulate in the lungs, heart, liver or spleen. Nevertheless, the polyplexes failed to induce specific mRNA degradation, hence neither reduction in tumor volume nor prolonged mice survival was seen.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/terapia , Micelas , Ácido Poliglutâmico/química , Polímeros/química , RNA Interferente Pequeno/administração & dosagem , Terapêutica com RNAi , Animais , Antineoplásicos/química , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Tensoativos/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/genética , Quinase 1 Polo-Like
5.
Drug Resist Updat ; 27: 39-58, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27449597

RESUMO

The progress in medical research has led to the understanding that cancer is a large group of heterogeneous diseases, with high variability between and within individuals. This variability sprouted the ambitious goal to improve therapeutic outcomes, while minimizing drug adverse effects through stratification of patients by the differences in their disease markers, in a personalized manner, as opposed to the strategy of "one therapy fits all". Nanotheranostics, composed of nanoparticles (NPs) carrying therapeutic and/or diagnostics probes, have the potential to revolutionize personalized medicine. There are different modalities to combine these two distinct fields into one system for a synergistic outcome. The addition of a nanocarrier to a theranostic system holds great promise. Nanocarriers possess high surface area, enabling sophisticated functionalization with imaging agents, thus gaining enhanced diagnostic ability in real-time. Yet, most of the FDA-approved theranostic approaches are based on small molecules. The theranostic approaches that are reviewed herein are paving the road towards personalized medicine through all stages of patient care: starting from screening and diagnostics, proceeding to treatment and ending with treatment follow-up. Our current review provides a broad background and highlights new insights for the rational design of theranostic nanosystems for desired therapeutic niches, while summoning the hurdles on their way to become first-line diagnostics and therapeutics for cancer patients.


Assuntos
Diagnóstico por Imagem/métodos , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/diagnóstico por imagem , Medicina de Precisão/métodos , Nanomedicina Teranóstica/métodos , Ensaios Clínicos como Assunto , Diagnóstico por Imagem/instrumentação , Monitoramento de Medicamentos/instrumentação , Monitoramento de Medicamentos/métodos , Humanos , Microbolhas/uso terapêutico , Nanopartículas/administração & dosagem , Estadiamento de Neoplasias , Neoplasias/patologia , Neoplasias/terapia , Fotoquimioterapia/métodos , Medicina de Precisão/instrumentação , Radiossensibilizantes/uso terapêutico , Radioterapia Guiada por Imagem/métodos , Nanomedicina Teranóstica/instrumentação
6.
Biomacromolecules ; 17(9): 2787-800, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27377188

RESUMO

It has been two decades since cationic polymers were introduced to the world of oligonucleotides delivery. However, the optimal physicochemical properties to make them a successful delivery vehicle are yet unknown. An ideal system became particularly interesting and necessary with the introduction of RNA interference as a promising therapeutic approach. Such nanocarrier should overcome challenges such as low plasma stability, poor cellular internalization and endosomal escape to induce gene silencing. To that end, we synthesized a library of biodegradable aminated poly(α)glutamate varied by amine moieties. In an attempt to elucidate the structure-function relationship, our polyplexes were physicochemically characterized and their silencing activity and cytotoxicity were evaluated. We found several structures that demonstrated improved cellular internalization. These candidates silenced gene expression to less than 50% of their initial levels, while being safe to cells and mice. Based on our research, an improved and promising tailor-designed siRNA delivery platform can be developed.


Assuntos
Aminas/química , Portadores de Fármacos/química , Ácido Poliglutâmico/química , Polímeros/química , RNA Interferente Pequeno/administração & dosagem , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Animais , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , RNA Interferente Pequeno/genética , Células Tumorais Cultivadas , Proteínas rac1 de Ligação ao GTP/genética
7.
Nanomedicine ; 12(7): 2201-2214, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27262933

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive primary neoplasm of the brain. Poor prognosis is mainly attributed to tumor heterogeneity, invasiveness, and drug resistance. microRNA-based therapeutics represent a promising approach due to their ability to inhibit multiple targets. In this work, we aim to restore the oncosuppressor activity of microRNA-34a (miR-34a) in GBM. We developed a cationic carrier system, dendritic polyglycerolamine (dPG-NH2), which remarkably improves miRNA stability, intracellular trafficking, and activity. dPG-NH2 carrying mature miR-34a targets C-MET, CDK6, Notch1 and BCL-2, consequently inhibiting cell cycle progression, proliferation and migration of GBM cells. Following complexation with dPG-NH2, miRNA is stable in plasma and able to cross the blood-brain barrier. We further show inhibition of tumor growth following treatment with dPG-NH2-miR-34a in a human glioblastoma mouse model. We hereby present a promising technology using dPG-NH2-miR-34a polyplex for brain-tumor treatment, with enhanced efficacy and no apparent signs of toxicity.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , MicroRNAs/farmacologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Portadores de Fármacos , Glioblastoma , Glicerol , Humanos , Polímeros
8.
PLoS One ; 19(6): e0300847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38917158

RESUMO

To date, several types of airway stents are available to treat central airway obstructions. However, the ideal stent that can overcome anatomical, mechanical and microbiological issues is still awaited. In addition, therapeutic effect and self-elimination of these stents are desirable properties, which pose an additional challenge for development and manufacturing. We aimed to create a prototype bioresorbable tracheal stent with acceptable clinical tolerance, fit and biocompatibility, that could be tested in a rabbit model and in the future be further optimized to enable drug-elution and ensure local therapeutic effect. Twenty-one New Zealand White Rabbits received five different types of bioresorbable tracheal stents, 3D-printed from poly(D,L-lactide-co-ε-caprolactone) metacrylates. Various configurations were tested for their functionality and improved until the best performing prototype could undergo detailed in vivo assessment, regarding clinical tolerance, migration and biocompatibility. Previously tested types of 3D printed stents in our preliminary study required improvement due to several problems, mainly related to breakage, unreliable stability and/or migration within the trachea. Abandoned or refined pre-prototypes were not analyzed in a comparative way. The final best performing prototype stent (GSP2 (Group Stent Prototype 2), n = 8) allowed a transoral application mode and showed good clinical tolerance, minimal migration and acceptable biocompatibility. The good performance of stent type GSP2 was attributed to the helix-shaped surface structure, which was therefore regarded as a key-feature. This prototype stent offers the possibility for further research in a large animal model to confirm the promising data and assess other properties such as bioresorption.


Assuntos
Implantes Absorvíveis , Impressão Tridimensional , Stents , Traqueia , Animais , Coelhos , Stents/efeitos adversos , Teste de Materiais , Materiais Biocompatíveis/química , Desenho de Prótese , Poliésteres/química
9.
Adv Mater ; 35(44): e2212000, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37452635

RESUMO

Extracellular vesicles (EVs) are secreted by all living cells and are found in body fluids. They exert numerous physiological and pathological functions and serve as cargo shuttles. Due to their safety and inherent bioactivity, they have emerged as versatile therapeutic agents, biomarkers, and potential drug carriers. Despite the growing interest in EVs, current progress in this field is, in part, limited by relatively inefficient isolation techniques. Conventional methods are indeed slow, laborious, require specialized laboratory equipment, and may result in low yield and purity. This work describes an electrochemically controlled "all-in-one" device enabling capturing, loading, and releasing of EVs. The device is composed of a fluidic channel confined within antibody-coated microstructured electrodes. It rapidly isolates EVs with a high level of purity from various biofluids. As a proof of principle, the device is applied to isolate EVs from skin wounds of healthy and diabetic mice. Strikingly, it is found that EVs from healing wounds of diabetic mice are enriched in mitochondrial proteins compared to those of healthy mice. Additionally, the device improves the loading protocol of EVs with polyplexes, and may therefore find applications in nucleic acid delivery. Overall, the electrochemical device can greatly facilitate the development of EVs-based technologies.


Assuntos
Diabetes Mellitus Experimental , Vesículas Extracelulares , Animais , Camundongos , Diabetes Mellitus Experimental/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Comunicação Celular , Portadores de Fármacos/metabolismo
10.
Theranostics ; 12(14): 6339-6362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36168618

RESUMO

Rationale: Cutaneous melanoma is the most aggressive and deadliest of all skin malignancies. Complete primary tumor removal augmented by advanced imaging tools and effective post-operative treatment is critical in the prevention of tumor recurrence and future metastases formation. Methods: To meet this challenge, we designed novel polymeric imaging and therapeutic systems, implemented in a two-step theranostic approach. Both are composed of the biocompatible and biodegradable poly(α,L-glutamic acid) (PGA) nanocarrier that facilitates extravasation-dependent tumor targeting delivery. The first system is a novel, fluorescent, Turn-ON diagnostic probe evaluated for the precise excision of the primary tumor during image-guided surgery (IGS). The fluorescence activation of the probe occurs via PGA degradation by tumor-overexpressed cathepsins that leads to the separation of closely-packed, quenched FRET pair. This results in the emission of a strong fluorescence signal enabling the delineation of the tumor boundaries. Second, therapeutic step is aimed to prevent metastases formation with minimal side effects and maximal efficacy. To that end, a targeted treatment containing a BRAF (Dabrafenib - mDBF)/MEK (Selumetinib - SLM) inhibitors combined on one polymeric platform (PGA-SLM-mDBF) was evaluated for its anti-metastatic, preventive activity in combination with immune checkpoint inhibitors (ICPi) αPD1 and αCTLA4. Results: IGS in melanoma-bearing mice led to a high tumor-to-background ratio and reduced tumor recurrence in comparison with mice that underwent surgery under white light (23% versus 33%, respectively). Adjuvant therapy with PGA-SLM-mDBF combined with ICPi, was well-tolerated and resulted in prolonged survival and prevention of peritoneal and brain metastases formation in BRAF-mutated melanoma-bearing mice. Conclusions: The results reveal the great clinical potential of our PGA-based nanosystems as a tool for holistic melanoma treatment management.


Assuntos
Melanoma , Neoplasias Cutâneas , Cirurgia Assistida por Computador , Animais , Camundongos , Catepsinas , Ácido Glutâmico , Inibidores de Checkpoint Imunológico , Melanoma/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno , Nanoconjugados , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/prevenção & controle , Ácido Poliglutâmico/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf , Neoplasias Cutâneas/patologia
11.
Adv Drug Deliv Rev ; 175: 113760, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33838208

RESUMO

The complexity and diversity of the biochemical processes that occur during tumorigenesis and metastasis are frequently over-simplified in the traditional in vitro cell cultures. Two-dimensional cultures limit researchers' experimental observations and frequently give rise to misleading and contradictory results. Therefore, in order to overcome the limitations of in vitro studies and bridge the translational gap to in vivo applications, 3D models of cancer were developed in the last decades. The three dimensions of the tumor, including its cellular and extracellular microenvironment, are recreated by combining co-cultures of cancer and stromal cells in 3D hydrogel-based growth factors-inclusive scaffolds. More complex 3D cultures, containing functional blood vasculature, can integrate in the system external stimuli (e.g. oxygen and nutrient deprivation, cytokines, growth factors) along with drugs, or other therapeutic compounds. In this scenario, cell signaling pathways, metastatic cascade steps, cell differentiation and self-renewal, tumor-microenvironment interactions, and precision and personalized medicine, are among the wide range of biological applications that can be studied. Here, we discuss a broad variety of strategies exploited by scientists to create in vitro 3D cancer models that resemble as much as possible the biology and patho-physiology of in vivo tumors and predict faithfully the treatment outcome.


Assuntos
Nanomedicina/métodos , Alicerces Teciduais , Células Tumorais Cultivadas/patologia , Animais , Antineoplásicos/uso terapêutico , Humanos , Hidrogéis , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/terapia , Esferoides Celulares/patologia , Células Tumorais Cultivadas/efeitos dos fármacos
12.
Pharmaceutics ; 13(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34959480

RESUMO

Development of chemo-resistance is a major challenge in glioblastoma (GB) treatment. This phenomenon is often driven by increased activation of genes associated with DNA repair, such as the alkyl-removing enzyme O6-methylguanine-DNA methyltransferase (MGMT) in combination with overexpression of canonical genes related to cell proliferation and tumor progression, such as Polo-like kinase 1 (Plk1). Hereby, we attempt to sensitize resistant GB cells using our established amphiphilic poly(α)glutamate (APA): small interfering RNA (siRNA) polyplexes, targeting Plk1. Furthermore, we improved brain-targeting by decorating our nanocarrier with sulfonate groups. Our sulfonated nanocarrier showed superior selectivity towards P-selectin (SELP), a transmembrane glycoprotein overexpressed in GB and angiogenic brain endothelial cells. Self-assembled polyplexes of sulfonated APA and siPlk1 internalized into GB cells and into our unique 3-dimensional (3D) GB spheroids inducing specific gene silencing. Moreover, our RNAi nanotherapy efficiently reduced the cell viability of both chemo-sensitive and chemo-resistant GB cells. Our developed sulfonated amphiphilic poly(α)glutamate nanocarrier has the potential to target siRNA to GB brain tumors. Our findings may strengthen the therapeutic applications of siRNA for chemo-resistant GB tumors, or as a combination therapy for chemo-sensitive GB tumors.

13.
Adv Ther (Weinh) ; 3(8)2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35754977

RESUMO

Targeted therapies against cancer can relieve symptoms and induce remission, however, they often present limited duration of disease control, cause side effects and often induce acquired resistance. Therefore, there is a great motivation to develop a unique delivery system, targeted to the tumor, in which we can combine several active entities, increase the therapeutic index by reducing systemic exposure, and enhance their synergistic activity. To meet these goals, we chose the biocompatible and biodegradable poly(α,L-glutamic acid) (PGA) as a nanocarrier that facilitates extravasation-dependent tumor targeting delivery. The RAS/RAF/MEK/ERK pathway when aberrantly activated in melanoma, can lead to uncontrolled cell proliferation, induced invasion, and reduced apoptosis. Here, we selected two drugs targeting this pathway; a MEK1/2 inhibitor (selumetinib; SLM) and a modified BRAF inhibitor (modified dabrafenib; mDBF), that exhibited synergism in vitro. We synthesized and characterized our nanomedicine of PGA conjugated to SLM and mDBF (PGA-SLM-mDBF). PGA-SLM-mDBF inhibited the proliferation of melanoma cells and decreased their migratory and sprouting abilities without inducing a hemolytic effect. Moreover, the polymer-2-drugs conjugate exhibited superior anti-tumor activity in comparison with the two separate polymer-drug conjugates in vitro and with free drugs in a mouse model of primary melanoma and prolonged survival at a lower dose.

14.
J Control Release ; 310: 58-73, 2019 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-31400381

RESUMO

Novel bioconjugates (Agm6-M-PEG-FA) for active oligonucleotide (ON) delivery have been developed by conjugating a cationic oligo-guanidyl star-like shaped "head" (Agm6-M) to a polymeric "tail" (PEG) terminating with folic acid (FA) as targeting agent or methoxy group (Agm6-M-PEG-FA and Agm6-M-PEG-OCH3, respectively). Gel electrophoresis showed that the bioconjugates completely associated with ONs at 3 nitrogen/phosphate (N/P) ratio. Studies performed with folate receptor (FR)-overexpressing HeLa cells, showed that optimal cell up-take was obtained with the 75:25 w/w Agm6-M-PEG-OCH3:Agm6-M-PEG-FA mixture. Dynamic light scattering and transmission electron microscopy showed that the polyplexes had size <80 nm with narrow polydispersity and rod-shaped morphology. The polyplexes were stable for several hours in plasma while ON was released in the presence of heparin concentration 16-times higher than the physiological one. The polyplexes displayed negligible cytotoxicity, hemolysis and low pro-inflammatory TNF-α release. Studies performed with FR-overexpressing HeLa and MDA-MB-231 cells using siRac1 revealed that the folated polyplexes caused significantly higher gene silencing (86.1 ±â€¯9.6%) and inhibition of cell migration (40%) than the non-folated polyplexes obtained with Agm6-M-PEG-OCH3 only. Although cytofluorimetric analyses showed similar cell uptake for both folated and non-folated polyplexes, confocal, TEM and competition studies showed that the folated polyplexes were taken-up by lysosome escaping caveolin-mediated pathway with final polyplex localization within cytosol, while non-folated polyplexes were preferentially taken-up via clathrin-mediated pathway to localize in the lysosomes. Finally, preliminary in vivo studies carried out in mice revealed that the folated polyplexes dispose in the tumor mass.


Assuntos
Transportadores de Ácido Fólico/metabolismo , Técnicas de Transferência de Genes , Nanoconjugados/química , Oligonucleotídeos/administração & dosagem , Animais , Ligação Competitiva , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Transportadores de Ácido Fólico/genética , Inativação Gênica , Células HeLa , Humanos , Camundongos Nus , Neoplasias Experimentais/genética , Neoplasias Experimentais/terapia , Oligonucleotídeos/genética , Tamanho da Partícula , Ligação Proteica , Propriedades de Superfície , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Polymers (Basel) ; 10(5)2018 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30966582

RESUMO

RNA interference (RNAi) can contribute immensely to the area of personalized medicine by its ability to target any gene of interest. Nevertheless, its clinical use is limited by lack of efficient delivery systems. Polymer therapeutics can address many of the challenges encountered by the systemic delivery of RNAi, but suffer from inherent drawbacks such as polydispersity and batch to batch heterogeneity. These characteristics may have far-reaching consequences when dealing with therapeutic applications, as both the activity and the toxicity may be dependent on the length of the polymer chain. To investigate the consequences of polymers' heterogeneity, we have synthesized two batches of aminated poly(α)glutamate polymers (PGAamine), differing in their degree of polymerization, but not in the monomer units or their conjugation. Isothermal titration calorimetry study was conducted to define the binding affinity of these polymers with siRNA. Molecular dynamics simulation revealed that Short PGAamine:siRNA polyplexes exposed a higher amount of amine moieties to the surroundings compared to Long PGAamine. This resulted in a higher zeta potential, leading to faster degradation and diminished gene silencing. Altogether, our study highlights the importance of an adequate physico-chemical characterization to elucidate the structure⁻function-activity relationship, for further development of tailor-designed RNAi delivery vehicles.

16.
Nat Commun ; 9(1): 16, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29295989

RESUMO

The heterogeneity of pancreatic ductal adenocarcinoma (PDAC) suggests that successful treatment might rely on simultaneous targeting of multiple genes, which can be achieved by RNA interference-based therapeutic strategies. Here we show a potent combination of microRNA and siRNA delivered by an efficient nanocarrier to PDAC tumors. Using proteomic-microRNA profiles and survival data of PDAC patients from TCGA, we found a novel signature for prolonged survival. Accordingly, we used a microRNA-mimic to increase miR-34a together with siRNA to silence PLK1 oncogene. For in vivo dual-targeting of this combination, we developed a biodegradable amphiphilic polyglutamate amine polymeric nanocarrier (APA). APA-miRNA-siRNA polyplexes systemically administered to orthotopically inoculated PDAC-bearing mice showed no toxicity and accumulated at the tumor, resulting in an enhanced antitumor effect due to inhibition of MYC oncogene, a common target of both miR-34a and PLK1. Taken together, our findings warrant this unique combined polyplex's potential as a novel nanotherapeutic for PDAC.


Assuntos
Carcinoma Ductal Pancreático/genética , Proteínas de Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/genética , Adulto , Idoso , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/terapia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Portadores de Fármacos/química , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estimativa de Kaplan-Meier , Masculino , Camundongos Endogâmicos C57BL , Camundongos SCID , Pessoa de Meia-Idade , Nanoestruturas/química , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , RNA Interferente Pequeno/química , Terapêutica com RNAi/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Quinase 1 Polo-Like
17.
Theranostics ; 8(13): 3437-3460, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30026858

RESUMO

Complete tumor removal during surgery has a great impact on patient survival. To that end, the surgeon should detect the tumor, remove it and validate that there are no residual cancer cells left behind. Residual cells at the incision margin of the tissue removed during surgery are associated with tumor recurrence and poor prognosis for the patient. In order to remove the tumor tissue completely with minimal collateral damage to healthy tissue, there is a need for diagnostic tools that will differentiate between the tumor and its normal surroundings. Methods: We designed, synthesized and characterized three novel polymeric Turn-ON probes that will be activated at the tumor site by cysteine cathepsins that are highly expressed in multiple tumor types. Utilizing orthotopic breast cancer and melanoma models, which spontaneously metastasize to the brain, we studied the kinetics of our polymeric Turn-ON nano-probes. Results: To date, numerous low molecular weight cathepsin-sensitive substrates have been reported, however, most of them suffer from rapid clearance and reduced signal shortly after administration. Here, we show an improved tumor-to-background ratio upon activation of our Turn-ON probes by cathepsins. The signal obtained from the tumor was stable and delineated the tumor boundaries during the whole surgical procedure, enabling accurate resection. Conclusions: Our findings show that the control groups of tumor-bearing mice, which underwent either standard surgery under white light only or under the fluorescence guidance of the commercially-available imaging agents ProSense® 680 or 5-aminolevulinic acid (5-ALA), survived for less time and suffered from tumor recurrence earlier than the group that underwent image-guided surgery (IGS) using our Turn-ON probes. Our "smart" polymeric probes can potentially assist surgeons' decision in real-time during surgery regarding the tumor margins needed to be removed, leading to improved patient outcome.


Assuntos
Neoplasias da Mama/cirurgia , Melanoma/cirurgia , Nanopartículas/administração & dosagem , Imagem Óptica/métodos , Coloração e Rotulagem/métodos , Cirurgia Assistida por Computador/métodos , Animais , Catepsinas/metabolismo , Modelos Animais de Doenças , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/metabolismo , Humanos , Camundongos , Nanopartículas/metabolismo , Resultado do Tratamento
18.
J Control Release ; 257: 132-143, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-27356019

RESUMO

Small interfering RNA (siRNA) can silence the expression of a targeted gene in a process known as RNA interference (RNAi). As a consequence, RNAi has immense potential as a novel therapeutic approach in cancer targeted therapy. However, successful application of siRNA for therapeutic purposes is challenging due to its rapid renal clearance, degradation by RNases in the bloodstream, poor cellular penetration, immunogenicity and aggregation in the blood. In addition, the few oligonucleotide-based nanomedicines that reached clinical trials either go to the liver following systemic administration or are applied topically. Treatment of solid tumors requires selective distribution of siRNA to the target tissue, hence there is an unmet medical need for an efficacious and safe nano-sized delivery system for their clinical use. To overcome these hurdles, we have designed, synthesized and physico-chemically characterized a novel nanocarrier based on aminated poly(α)glutamate (PGAamine). This cathepsin B-biodegradable polymer interacts electrostatically with the siRNA to form a nano-sized polyplex stable in plasma. Treatment with PGAamine-Rac1 siRNA polyplex (siRac1-polyplex) caused specific gene silencing by 80% in HeLa and SKOV-3 human ovarian adenocarcinoma cells as opposed to PGAamine-control non-targeting siRNA polyplex (siCtrl-polyplex) leading to inhibition of cell migration and wound healing abilities. A stepwise dose escalation was performed in order to determine the in vivo maximum tolerated dose (MTD). This was followed by intraperitoneal administration of siRac1-polyplex to mCherry-labeled ovarian adenocarcinoma-bearing mice leading to preferred tumor accumulation of siRac1 (8-fold) which resulted in 38% Rac1 knockdown. Furthermore, the polyplex was administered intravenously to lung carcinoma-bearing mice in which it caused 33% Rac1 knockdown. These promising results led to efficacy studies administering systemic treatment with an anticancer siRNA, siPlk1-polyplex, which inhibited tumor growth by 73% and 87% compared with siCtrl-polyplex or saline-treated mice, respectively, leading to prolonged overall survival. These findings represent the first time that a polyaminated poly(α)glutamate polymer is used for an efficacious and safe tumor delivery of RNAi following systemic administration.


Assuntos
Técnicas de Transferência de Genes , Neoplasias/terapia , Ácido Poliglutâmico/química , RNA Interferente Pequeno/administração & dosagem , Aminação , Animais , Linhagem Celular Tumoral , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Terapêutica com RNAi , Proteínas rac1 de Ligação ao GTP/genética
19.
Elife ; 62017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28976305

RESUMO

Glioblastoma is a highly aggressive brain tumor. Current standard-of-care results in a marginal therapeutic outcome, partly due to acquirement of resistance and insufficient blood-brain barrier (BBB) penetration of chemotherapeutics. To circumvent these limitations, we conjugated the chemotherapy paclitaxel (PTX) to a dendritic polyglycerol sulfate (dPGS) nanocarrier. dPGS is able to cross the BBB, bind to P/L-selectins and accumulate selectively in intracranial tumors. We show that dPGS has dual targeting properties, as we found that P-selectin is not only expressed on tumor endothelium but also on glioblastoma cells. We delivered dPGS-PTX in combination with a peptidomimetic of the anti-angiogenic protein thrombospondin-1 (TSP-1 PM). This combination resulted in a remarkable synergistic anticancer effect on intracranial human and murine glioblastoma via induction of Fas and Fas-L, with no side effects compared to free PTX or temozolomide. This study shows that our unique therapeutic approach offers a viable alternative for the treatment of glioblastoma.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Portadores de Fármacos/administração & dosagem , Glioblastoma/tratamento farmacológico , Glicerol/administração & dosagem , Paclitaxel/administração & dosagem , Polímeros/administração & dosagem , Trombospondina 1/administração & dosagem , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Sinergismo Farmacológico , Tratamento Farmacológico/métodos , Glicerol/química , Glicerol/farmacocinética , Humanos , Camundongos , Selectina-P/metabolismo , Paclitaxel/química , Paclitaxel/farmacocinética , Polímeros/química , Polímeros/farmacocinética , Ligação Proteica , Resultado do Tratamento
20.
J Control Release ; 239: 159-68, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27569663

RESUMO

Glioblastoma Multiforme (GBM) is one of the most aggressive forms of all cancers. The median survival with current standard-of-care radiation and chemotherapy is about 14months. GBM is difficult to treat due to heterogeneity in cancer cell population. MicroRNA-based drugs have rapidly become a vast and burgeoning field due to the ability of a microRNA (miRNA) to target many genes involved in key cellular pathways. However, in vivo delivery of miRNA remains a crucial challenge for its therapeutic success. To bypass this shortcoming, we designed polymeric nanogels (NGs), which are based on a polyglycerol-scaffold, as a new strategy of miRNA delivery for GBM therapy. We focused on miR-34a, which is known for its key role in important oncogenic pathways and its tumor suppression ability in GBM and other cancers. We evaluated the capability of six NG derivatives to complex with miR-34a, neutralize its negative charge and deliver active miRNA to the cell cytoplasm. Human U-87 MG GBM cells treated with our NG-miR-34a nano-polyplexes showed remarkable downregulation of miR-34a target genes, which play key roles in the regulation of apoptosis and cell cycle arrest, and induce inhibition of cells proliferation and migration. Administration of NG-miR-34a nano-polyplexes to human U-87 MG GBM-bearing SCID mice significantly inhibited tumor growth as opposed to treatment with NG-negative control miR polyplex or saline. The comparison between different polyplexes highlighted the key features for the rational design of polymeric delivery systems for oligonucleotides. Taken together, we expect that this new therapeutic approach will pave the way for safe and efficient therapies for GBM.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Portadores de Fármacos/administração & dosagem , Glioblastoma/tratamento farmacológico , MicroRNAs/administração & dosagem , Polietilenoglicóis/administração & dosagem , Polietilenoimina/administração & dosagem , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Portadores de Fármacos/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos SCID , MicroRNAs/genética , MicroRNAs/metabolismo , Nanogéis , Polietilenoglicóis/metabolismo , Polietilenoimina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA