Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(5): 101913, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398358

RESUMO

The N-terminal (NT) domain of spider silk proteins (spidroins) is crucial for their storage at high concentrations and also regulates silk assembly. NTs from the major ampullate spidroin (MaSp) and the minor ampullate spidroin are monomeric at neutral pH and confer solubility to spidroins, whereas at lower pH, they dimerize to interconnect spidroins in a fiber. This dimerization is known to result from modulation of electrostatic interactions by protonation of well-conserved glutamates, although it is undetermined if this mechanism applies to other spidroin types as well. Here, we determine the solution and crystal structures of the flagelliform spidroin NT, which shares only 35% identity with MaSp NT, and investigate the mechanisms of its dimerization. We show that flagelliform spidroin NT is structurally similar to MaSp NT and that the electrostatic intermolecular interaction between Asp 40 and Lys 65 residues is conserved. However, the protonation events involve a different set of residues than in MaSp, indicating that an overall mechanism of pH-dependent dimerization is conserved but can be mediated by different pathways in different silk types.


Assuntos
Fibroínas , Seda , Aranhas , Animais , Sequência Conservada , Dimerização , Fibroínas/química , Fibroínas/genética , Fibroínas/metabolismo , Concentração de Íons de Hidrogênio , Domínios Proteicos/genética , Seda/química , Seda/genética , Seda/metabolismo , Aranhas/química , Aranhas/genética , Aranhas/metabolismo
2.
Biochem Biophys Res Commun ; 655: 75-81, 2023 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-36933310

RESUMO

Within the field of combinatorial protein engineering there is a great demand for robust high-throughput selection platforms that allow for unbiased protein library display, affinity-based screening, and amplification of selected clones. We have previously described the development of a staphylococcal display system used for displaying both alternative-scaffolds and antibody-derived proteins. In this study, the objective was to generate an improved expression vector for displaying and screening a high-complexity naïve affibody library, and to facilitate downstream validation of isolated clones. A high-affinity normalization tag, consisting of two ABD-moieties, was introduced to simplify off-rate screening procedures. In addition, the vector was furnished with a TEV protease substrate recognition sequence upstream of the protein library which enables proteolytic processing of the displayed construct for improved binding signal. In the library design, 13 of the 58 surface-exposed amino acid positions were selected for full randomization (except proline and cysteine) using trinucleotide technology. The genetic library was successfully transformed to Staphylococcus carnosus cells, generating a protein library exceeding 109 members. De novo selections against three target proteins (CD14, MAPK9 and the affibody ZEGFR:2377) were successfully performed using magnetic bead-based capture followed by flow-cytometric sorting, yielding affibody molecules binding their respective target with nanomolar affinity. Taken together, the results demonstrate the feasibility of the staphylococcal display system and the proposed selection procedure to generate new affibody molecules with high affinity.


Assuntos
Biblioteca de Peptídeos , Engenharia de Proteínas , Citometria de Fluxo/métodos , Engenharia de Proteínas/métodos , Ligação Proteica
3.
Biochemistry ; 60(9): 678-688, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33621049

RESUMO

Protein oligomerization is a commonly encountered strategy by which the functional repertoire of proteins is increased. This, however, is a double-edged sword strategy because protein oligomerization is notoriously difficult to control. Living organisms have therefore developed a number of chaperones that prevent protein aggregation. The small ATP-independent molecular chaperone domain proSP-C BRICHOS, which is mainly trimeric, specifically inhibits fibril surface-catalyzed nucleation reactions that give rise to toxic oligomers during the aggregation of the Alzheimer's disease-related amyloid-ß peptide (Aß42). Here, we have created a stable proSP-C BRICHOS monomer mutant and show that it does not bind to monomeric Aß42 but has a high affinity for Aß42 fibrils, using surface plasmon resonance. Kinetic analysis of Aß42 aggregation profiles, measured by thioflavin T fluorescence, reveals that the proSP-C BRICHOS monomer mutant strongly inhibits secondary nucleation reactions and thereby reduces the level of catalytic formation of toxic Aß42 oligomers. To study binding between the proSP-C BRICHOS monomer mutant and small soluble Aß42 aggregates, we analyzed fluorescence cross-correlation spectroscopy measurements with the maximum entropy method for fluorescence correlation spectroscopy. We found that the proSP-C BRICHOS monomer mutant binds to the smallest emerging Aß42 aggregates that are comprised of eight or fewer Aß42 molecules, which are already secondary nucleation competent. Our approach can be used to provide molecular-level insights into the mechanisms of action of substances that interfere with protein aggregation.


Assuntos
Trifosfato de Adenosina/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Chaperonas Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Agregação Patológica de Proteínas , Multimerização Proteica , Proteína C Associada a Surfactante Pulmonar/metabolismo , Humanos , Domínios Proteicos , Proteína C Associada a Surfactante Pulmonar/genética
4.
Microb Cell Fact ; 20(1): 150, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330289

RESUMO

BACKGROUND: The human Bri2 BRICHOS domain inhibits amyloid formation and toxicity and could be used as a therapeutic agent against amyloid diseases. For translation into clinical use, large quantities of correctly folded recombinant human (rh) Bri2 BRICHOS are required. To increase the expression and solubility levels of rh Bri2 BRICHOS it was fused to NT*, a solubility tag derived from the N-terminal domain of a spider silk protein, which significantly increases expression levels and solubility of target proteins. To increase the expression levels even further and reach the g/L range, which is a prerequisite for an economical production on an industrial scale, we developed a fed-batch expression protocol for Escherichia coli. RESULTS: A fed-batch production method for NT*-Bri2 BRICHOS was set up and systematically optimized. This gradual improvement resulted in expression levels of up to 18.8 g/L. Following expression, NT*-Bri2 BRICHOS was purified by chromatographic methods to a final yield of up to 6.5 g/L. After removal of the NT*-tag and separation into different oligomeric species, activity assays verified that different assembly states of the fed-batch produced rh Bri2 BRICHOS have the same ability to inhibit fibrillar and non-fibrillar protein aggregation as the reference protein isolated from shake flask cultures. CONCLUSIONS: The protocol developed in this work allows the production of large quantities of rh Bri2 BRICHOS using the solubility enhancing NT*-tag as a fusion partner, which is required to effectively conduct pre-clinical research.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Técnicas de Cultura Celular por Lotes/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Chaperonas Moleculares/genética , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Proteínas Recombinantes/metabolismo
5.
PLoS Biol ; 12(8): e1001921, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25093327

RESUMO

Spider silk fibers are produced from soluble proteins (spidroins) under ambient conditions in a complex but poorly understood process. Spidroins are highly repetitive in sequence but capped by nonrepetitive N- and C-terminal domains (NT and CT) that are suggested to regulate fiber conversion in similar manners. By using ion selective microelectrodes we found that the pH gradient in the silk gland is much broader than previously known. Surprisingly, the terminal domains respond in opposite ways when pH is decreased from 7 to 5: Urea denaturation and temperature stability assays show that NT dimers get significantly stabilized and then lock the spidroins into multimers, whereas CT on the other hand is destabilized and unfolds into ThT-positive ß-sheet amyloid fibrils, which can trigger fiber formation. There is a high carbon dioxide pressure (pCO2) in distal parts of the gland, and a CO2 analogue interacts with buried regions in CT as determined by nuclear magnetic resonance (NMR) spectroscopy. Activity staining of histological sections and inhibition experiments reveal that the pH gradient is created by carbonic anhydrase. Carbonic anhydrase activity emerges in the same region of the gland as the opposite effects on NT and CT stability occur. These synchronous events suggest a novel CO2 and proton-dependent lock and trigger mechanism of spider silk formation.


Assuntos
Dióxido de Carbono/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Prótons , Seda/metabolismo , Aranhas/enzimologia , Sequência de Aminoácidos , Estruturas Animais/enzimologia , Animais , Bicarbonatos/metabolismo , Anidrases Carbônicas/ultraestrutura , Dicroísmo Circular , Feminino , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Terciária de Proteína , Seda/ultraestrutura , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade , Temperatura
6.
Chembiochem ; 16(12): 1720-4, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26033527

RESUMO

Conversion of spider silk proteins from soluble dope to insoluble fibers involves pH-dependent dimerization of the N-terminal domain (NT). This conversion is tightly regulated to prevent premature precipitation and enable rapid silk formation at the end of the duct. Three glutamic acid residues that mediate this process in the NT from Euprosthenops australis major ampullate spidroin 1 are well conserved among spidroins. However, NTs of minor ampullate spidroins from several species, including Araneus ventricosus ((Av)MiSp NT), lack one of the glutamic acids. Here we investigate the pH-dependent structural changes of (Av)MiSp NT, revealing that it uses the same mechanism but involves a non-conserved glutamic acid residue instead. Homology modeling of the structures of other MiSp NTs suggests that these harbor different compensatory residues. This indicates that, despite sequence variations, the molecular mechanism underlying pH-dependent dimerization of NT is conserved among different silk types.


Assuntos
Seda/química , Aranhas/fisiologia , Animais , Dimerização , Fibroínas/química , Fibroínas/metabolismo , Concentração de Íons de Hidrogênio , Estrutura Terciária de Proteína , Seda/metabolismo , Aranhas/química
7.
Nat Commun ; 15(1): 965, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302480

RESUMO

Protein misfolding can generate toxic intermediates, which underlies several devastating diseases, such as Alzheimer's disease (AD). The surface of AD-associated amyloid-ß peptide (Aß) fibrils has been suggested to act as a catalyzer for self-replication and generation of potentially toxic species. Specifically tailored molecular chaperones, such as the BRICHOS protein domain, were shown to bind to amyloid fibrils and break this autocatalytic cycle. Here, we identify a site on the Aß42 fibril surface, consisting of three C-terminal ß-strands and particularly the solvent-exposed ß-strand stretching from residues 26-28, which is efficiently sensed by a designed variant of Bri2 BRICHOS. Remarkably, while only a low amount of BRICHOS binds to Aß42 fibrils, fibril-catalyzed nucleation processes are effectively prevented, suggesting that the identified site acts as a catalytic aggregation hotspot, which can specifically be blocked by BRICHOS. Hence, these findings provide an understanding how toxic nucleation events can be targeted by molecular chaperones.


Assuntos
Doença de Alzheimer , Amiloide , Humanos , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/genética , Domínios Proteicos , Chaperonas Moleculares/metabolismo , Fragmentos de Peptídeos/metabolismo
8.
Transl Res ; 262: 60-74, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37499744

RESUMO

Respiratory distress syndrome (RDS) in premature infants is caused by insufficient amounts of endogenous lung surfactant and is efficiently treated with replacement therapy using animal-derived surfactant preparations. On the other hand, adult/acute RDS (ARDS) occurs secondary to for example, sepsis, aspiration of gastric contents, and multitrauma and is caused by alveolar endothelial damage, leakage of plasma components into the airspaces and inhibition of surfactant activity. Instillation of surfactant preparations in ARDS has so far resulted in very limited treatment effects, partly due to inactivation of the delivered surfactants in the airspace. Here, we develop a combined surfactant protein B (SP-B) and SP-C peptide analogue (Combo) that can be efficiently expressed and purified from Escherichia coli without any solubility or purification tag. NMR spectroscopy shows that Combo peptide forms α-helices both in organic solvents and in lipid micelles, which coincide with the helical regions described for the isolated SP-B and SP-C parts. Artificial Combo surfactant composed of synthetic dipalmitoylphosphatidylcholine:palmitoyloleoylphosphatidylglycerol, 1:1, mixed with 3 weights % relative to total phospholipids of Combo peptide efficiently improves tidal volumes and lung gas volumes at end-expiration in a premature rabbit fetus model of RDS. Combo surfactant also improves oxygenation and respiratory parameters and lowers cytokine release in an acid instillation-induced ARDS adult rabbit model. Combo surfactant is markedly more resistant to inhibition by albumin and fibrinogen than a natural-derived surfactant in clinical use for the treatment of RDS. These features of Combo surfactant make it attractive for the development of novel therapies against human ARDS.


Assuntos
Surfactantes Pulmonares , Síndrome do Desconforto Respiratório do Recém-Nascido , Síndrome do Desconforto Respiratório , Recém-Nascido , Animais , Feminino , Coelhos , Adulto , Humanos , Síndrome do Desconforto Respiratório do Recém-Nascido/tratamento farmacológico , Surfactantes Pulmonares/farmacologia , Surfactantes Pulmonares/uso terapêutico , Surfactantes Pulmonares/química , Tensoativos/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo , Peptídeos/farmacologia , Peptídeos/química
9.
Methods Mol Biol ; 2406: 113-130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35089553

RESUMO

Spiders have evolved proteins that can be kept in a highly concentrated soluble form in the silk gland yet rapidly assemble into stable silk fibers under certain environmental conditions. The transition between soluble and fibrillar states is partly regulated by the pH-sensitive N-terminal (NT) domain which has emerged as nature's own solubility-enhancing domain. NT has an inherent capacity to keep the silk proteins' partly hydrophobic and very aggregation-prone regions from premature fibrillation in spite of storage at enormous concentrations. The genetically engineered double-mutant NT* shows increased solubility and stability and has arisen as a powerful tool for the production of aggregation-prone as well as other recombinant proteins. Here we describe a robust and highly efficient protocol for improved soluble expression of peptides and proteins by fusion to the NT* tag.


Assuntos
Fibroínas , Engenharia de Proteínas , Sequência de Aminoácidos , Animais , Fibroínas/química , Fibroínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Seda/química , Aranhas/química
10.
Front Mol Biosci ; 9: 936887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35775078

RESUMO

The spidroin N-terminal domain (NT) is responsible for high solubility and pH-dependent assembly of spider silk proteins during storage and fiber formation, respectively. It forms a monomeric five-helix bundle at neutral pH and dimerizes at lowered pH, thereby firmly interconnecting the spidroins. Mechanistic studies with the NTs from major ampullate, minor ampullate, and flagelliform spidroins (MaSp, MiSp, and FlSp) have shown that the pH dependency is conserved between different silk types, although the residues that mediate this process can differ. Here we study the tubuliform spidroin (TuSp) NT from Argiope argentata, which lacks several well conserved residues involved in the dimerization of other NTs. We solve its structure at low pH revealing an antiparallel dimer of two five-α-helix bundles, which contrasts with a previously determined Nephila antipodiana TuSp NT monomer structure. Further, we study a set of mutants and find that the residues participating in the protonation events during dimerization are different from MaSp and MiSp NT. Charge reversal of one of these residues (R117 in TuSp) results in significantly altered electrostatic interactions between monomer subunits. Altogether, the structure and mutant studies suggest that TuSp NT monomers assemble by elimination of intramolecular repulsive charge interactions, which could lead to slight tilting of α-helices.

11.
Front Immunol ; 13: 994328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105805

RESUMO

Human cathelicidin (LL-37) is a defense peptide with antimicrobial activity against various pathogens. However, LL-37 can also trigger tissue injury by binding to host cell membranes. The cytotoxic effects of LL-37 may be especially relevant in chronic respiratory diseases characterized by increased LL-37. The aim of this study was to investigate whether the human collectin SP-A and a trimeric recombinant fragment thereof (rfhSP-A) can regulate the activities of LL-37. To this end, we studied the interaction of LL-37 with SP-A and rfhSP-A by intrinsic fluorescence, dynamic light scattering, and circular dichroism, as well as the effects of these proteins on the antimicrobial and cytotoxic activities of LL-37. Both SP-A and rfhSP-A bound LL-37 with high affinity at physiological ionic strength (KD = 0.45 ± 0.01 nM for SP-A and 1.22 ± 0.7 nM for rfhSP-A). Such interactions result in the reduction of LL-37-induced cell permeability and IL-8 release in human pneumocytes, mediated by P2X7 channels. Binding of LL-37 to SP-A did not modify the properties of SP-A or the antibacterial activity of LL-37 against respiratory pathogens (Klebsiella pneumoniae, Pseudomonas aeruginosa, and nontypeable Haemophilus influenzae). SP-A/LL-37 complexes showed a greater ability to aggregate LPS vesicles than LL-37, which reduces endotoxin bioactivity. These results reveal the protective role of native SP-A in controlling LL-37 activities and suggest a potential therapeutic effect of rfhSP-A in reducing the cytotoxic and inflammatory actions of LL-37, without affecting its microbicidal activity against Gram-negative pathogens.


Assuntos
Células Epiteliais Alveolares , Colectinas , Células Epiteliais Alveolares/metabolismo , Antibacterianos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Humanos , Pseudomonas aeruginosa/metabolismo , Catelicidinas
12.
Front Immunol ; 13: 927017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159837

RESUMO

The exploration of therapies combining antimicrobial lung proteins and conventional antibiotics is important due to the growing problem of multidrug-resistant bacteria. The aim of this study was to investigate whether human SP-A and a recombinant trimeric fragment (rfhSP-A) have cooperative antimicrobial activity with antibiotics against pathogenic Gram-negative bacteria. We found that SP-A bound the cationic peptide polymyxin B (PMB) with an apparent dissociation constant (K D) of 0.32 ± 0.04 µM. SP-A showed synergistic microbicidal activity with polymyxin B and E, but not with other antibiotics, against three SP-A-resistant pathogenic bacteria: Klebsiella pneumoniae, non-typable Haemophilus influenzae (NTHi), and Pseudomonas aeruginosa. SP-A was not able to bind to K. pneumoniae, NTHi, or to mutant strains thereof expressing long-chain lipopolysaccharides (or lipooligosaccharides) and/or polysaccharide capsules. In the presence of PMB, SP-A induced the formation of SP-A/PMB aggregates that enhance PMB-induced bacterial membrane permeabilization. Furthermore, SP-A bound to a molecular derivative of PMB lacking the acyl chain (PMBN) with a K D of 0.26 ± 0.02 µM, forming SP-A/PMBN aggregates. PMBN has no bactericidal activity but can bind to the outer membrane of Gram-negative bacteria. Surprisingly, SP-A and PMBN showed synergistic bactericidal activity against Gram-negative bacteria. Unlike native supratrimeric SP-A, the trimeric rfhSP-A fragment had small but significant direct bactericidal activity against K. pneumoniae, NTHi, and P. aeruginosa. rfhSP-A did not bind to PMB under physiological conditions but acted additively with PMB and other antibiotics against these pathogenic bacteria. In summary, our results significantly improve our understanding of the antimicrobial actions of SP-A and its synergistic action with PMB. A peptide based on SP-A may aid the therapeutic use of PMB, a relatively cytotoxic antibiotic that is currently being reintroduced into clinics due to the global problem of antibiotic resistance.


Assuntos
Polimixina B , Polimixinas , Antibacterianos/química , Antibacterianos/farmacologia , Antibióticos Antineoplásicos , Bactérias , Bactérias Gram-Negativas/metabolismo , Humanos , Klebsiella pneumoniae , Polimixina B/metabolismo , Polimixina B/farmacologia , Polimixinas/química , Polimixinas/metabolismo , Polimixinas/farmacologia , Pseudomonas aeruginosa , Proteína A Associada a Surfactante Pulmonar
13.
RSC Chem Biol ; 3(11): 1342-1358, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349220

RESUMO

Proteins can self-assemble into amyloid fibrils or amorphous aggregates and thereby cause disease. Molecular chaperones can prevent both these types of protein aggregation, but to what extent the respective mechanisms are overlapping is not fully understood. The BRICHOS domain constitutes a disease-associated chaperone family, with activities against amyloid neurotoxicity, fibril formation, and amorphous protein aggregation. Here, we show that the activities of BRICHOS against amyloid-induced neurotoxicity and fibril formation, respectively, are oppositely dependent on a conserved aspartate residue, while the ability to suppress amorphous protein aggregation is unchanged by Asp to Asn mutations. The Asp is evolutionarily highly conserved in >3000 analysed BRICHOS domains but is replaced by Asn in some BRICHOS families. The conserved Asp in its ionized state promotes structural flexibility and has a pK a value between pH 6.0 and 7.0, suggesting that chaperone effects can be differently affected by physiological pH variations.

14.
Nat Commun ; 13(1): 4695, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970823

RESUMO

Recombinant spider silk proteins (spidroins) have multiple potential applications in development of novel biomaterials, but their multimodal and aggregation-prone nature have complicated production and straightforward applications. Here, we report that recombinant miniature spidroins, and importantly also the N-terminal domain (NT) on its own, rapidly form self-supporting and transparent hydrogels at 37 °C. The gelation is caused by NT α-helix to ß-sheet conversion and formation of amyloid-like fibrils, and fusion proteins composed of NT and green fluorescent protein or purine nucleoside phosphorylase form hydrogels with intact functions of the fusion moieties. Our findings demonstrate that recombinant NT and fusion proteins give high expression yields and bestow attractive properties to hydrogels, e.g., transparency, cross-linker free gelation and straightforward immobilization of active proteins at high density.


Assuntos
Fibroínas , Aranhas , Animais , Fibroínas/química , Hidrogéis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Seda/química , Aranhas/metabolismo
15.
Structure ; 30(5): 733-742.e7, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35290795

RESUMO

Disordered proteins pose a major challenge to structural biology. A prominent example is the tumor suppressor p53, whose low expression levels and poor conformational stability hamper the development of cancer therapeutics. All these characteristics make it a prime example of "life on the edge of solubility." Here, we investigate whether these features can be modulated by fusing the protein to a highly soluble spider silk domain (NT∗). The chimeric protein displays highly efficient translation and is fully active in human cancer cells. Biophysical characterization reveals a compact conformation, with the disordered transactivation domain of p53 wrapped around the NT∗ domain. We conclude that interactions with NT∗ help to unblock translation of the proline-rich disordered region of p53. Expression of partially disordered cancer targets is similarly enhanced by NT∗. In summary, we demonstrate that inducing co-translational folding via a molecular "spindle and thread" mechanism unblocks protein translation in vitro.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Ligação Proteica , Domínios Proteicos , Proteína Supressora de Tumor p53/metabolismo
16.
J Pharm Biomed Anal ; 198: 113996, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33690096

RESUMO

Human integral membrane protein 2B (ITM2B or Bri2) is a member of the BRICHOS family, proteins that efficiently prevent Aß42 aggregation via a unique mechanism. The identification of novel Bri2 BRICHOS client proteins could help elucidate signaling pathways and determine novel targets to prevent or cure amyloid diseases. To identify Bri2 BRICHOS interacting partners, we carried out a 'protein fishing' experiment using recombinant human (rh) Bri2 BRICHOS-coated magnetic particles, which exhibit essentially identical ability to inhibit Aß42 fibril formation as free rh Bri2 BRICHOS, in combination with proteomic analysis on homogenates of SH-SY5Y cells. We identified 70 proteins that had more significant interactions with rh Bri2 BRICHOS relative to the corresponding control particles. Three previously identified Bri2 BRICHOS interacting proteins were also identified in our 'fishing' experiments. The binding affinity of Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), the top 'hit', was calculated and was identified as a strong interacting partner. Enrichment analysis of the retained proteins identified three biological pathways: Rho GTPase, heat stress response and pyruvate, cysteine and methionine metabolism.


Assuntos
Peptídeos beta-Amiloides , Proteínas de Transporte , Proteínas Adaptadoras de Transdução de Sinal , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Humanos , Fenômenos Magnéticos , Ligação Proteica , Proteômica
17.
Sci Rep ; 10(1): 235, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937841

RESUMO

During storage in the silk gland, the N-terminal domain (NT) of spider silk proteins (spidroins) keeps the aggregation-prone repetitive region in solution at extreme concentrations. We observe that NTs from different spidroins have co-evolved with their respective repeat region, and now use an NT that is distantly related to previously used NTs, for efficient recombinant production of the amyloid-ß peptide (Aß) implicated in Alzheimer's disease. A designed variant of NT from Nephila clavipes flagelliform spidroin, which in nature allows production and storage of ß-hairpin repeat segments, gives exceptionally high yields of different human Aß variants as a solubility tag. This tool enables efficient production of target peptides also in minimal medium and gives up to 10 times more isotope-labeled monomeric Aß peptides per liter bacterial culture than previously reported.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fibroínas/química , Fibroínas/metabolismo , Sequência de Aminoácidos , Animais , Modelos Moleculares , Domínios Proteicos
18.
FEBS J ; 287(13): 2823-2833, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31815338

RESUMO

Proteins require an optimal balance of conformational flexibility and stability in their native environment to ensure their biological functions. A striking example is spidroins, spider silk proteins, which are stored at extremely high concentrations in soluble form, yet undergo amyloid-like aggregation during spinning. Here, we elucidate the stability of the highly soluble N-terminal domain (NT) of major ampullate spidroin 1 in the Escherichia coli cytosol as well as in inclusion bodies containing fibrillar aggregates. Surprisingly, we find that NT, despite being largely composed of amyloidogenic sequences, showed no signs of concentration-dependent aggregation. Using a novel intracellular hydrogen/deuterium exchange mass spectrometry (HDX-MS) approach, we reveal that NT adopts a tight fold in the E. coli cytosol and in this manner conceals its aggregation-prone regions by maintaining a tight fold under crowded conditions. Fusion of NT to the unstructured amyloid-forming Aß40 peptide, on the other hand, results in the formation of fibrillar aggregates. However, HDX-MS indicates that the NT domain is only partially incorporated into these aggregates in vivo. We conclude that NT is able to control its aggregation to remain functional under the extreme conditions in the spider silk gland.


Assuntos
Amiloide/química , Proteínas Amiloidogênicas/química , Fibroínas/química , Espectrometria de Massa com Troca Hidrogênio-Deutério/métodos , Sequência de Aminoácidos , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Animais , Sítios de Ligação , Cristalografia por Raios X , Fibroínas/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Aranhas
19.
J Am Soc Mass Spectrom ; 30(8): 1385-1388, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31286443

RESUMO

Modulating protein ion charge is a useful tool for the study of protein folding and interactions by electrospray ionization mass spectrometry. Here, we investigate activation-dependent charge reduction of protein ions with the chemical chaperone trimethylamine-N-oxide (TMAO). Based on experiments carried out on proteins ranging from 4.5 to 35 kDa, we find that when combined with collisional activation, TMAO removes approximately 60% of the charges acquired under native conditions. Ion mobility measurements furthermore show that TMAO-mediated charge reduction produces the same end charge state and arrival time distributions for native-like and denatured protein ions. Our results suggest that gas-phase collisions between the protein ions and TMAO result in proton transfer, in line with previous findings for dimethyl- and trimethylamine. By adjusting the energy of the collisions experienced by the ions, it is possible to control the degree of charge reduction, making TMAO a highly dynamic charge reducer that opens new avenues for manipulating protein charge states in ESI-MS and for investigating the relationship between protein charge and conformation. ᅟ.


Assuntos
Metilaminas/química , Proteínas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Gases/química , Humanos , Íons/química , Modelos Moleculares , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína
20.
Protein Eng Des Sel ; 21(4): 247-55, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18239074

RESUMO

Here we describe the first reported use of a Gram-positive bacterial system for the selection of affinity proteins from large combinatorial libraries displayed on the surface of Staphylococcus carnosus. An affibody library of 3 x 10(9) variants, based on a 58 residue domain from staphylococcal protein A, was pre-enriched for binding to human tumor necrosis factor-alpha (TNF-alpha) using one cycle of phage display and thereafter transferred to the staphylococcal host ( approximately 10(6) variants). The staphylococcal-displayed library was subjected to three rounds of flow-cytometric sorting, and the selected clones were screened and ranked by on-cell analysis for binding to TNF-alpha and further characterized using biosensor analysis and circular dichroism spectroscopy. The successful sorting yielded three different high-affinity binders (ranging from 95 pM to 2.2 nM) and constitutes the first selection of a novel affinity protein using Gram-positive bacterial display. The method combines the simplicity of working with a bacterial host with the advantages of displaying recombinant proteins on robust Gram-positive bacteria as well as using powerful flow cytometry in the selection and characterization process.


Assuntos
Citometria de Fluxo/métodos , Biblioteca de Peptídeos , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Staphylococcus/genética , Staphylococcus/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sequência de Aminoácidos , Técnicas Biossensoriais , Dicroísmo Circular , Humanos , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteína Estafilocócica A/genética , Proteína Estafilocócica A/metabolismo , Fator de Necrose Tumoral alfa/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA