Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Biol ; 20(9): e3001783, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36095010

RESUMO

Western blotting is a standard laboratory method used to detect proteins and assess their expression levels. Unfortunately, poor western blot image display practices and a lack of detailed methods reporting can limit a reader's ability to evaluate or reproduce western blot results. While several groups have studied the prevalence of image manipulation or provided recommendations for improving western blotting, data on the prevalence of common publication practices are scarce. We systematically examined 551 articles published in the top 25% of journals in neurosciences (n = 151) and cell biology (n = 400) that contained western blot images, focusing on practices that may omit important information. Our data show that most published western blots are cropped and blot source data are not made available to readers in the supplement. Publishing blots with visible molecular weight markers is rare, and many blots additionally lack molecular weight labels. Western blot methods sections often lack information on the amount of protein loaded on the gel, blocking steps, and antibody labeling protocol. Important antibody identifiers like company or supplier, catalog number, or RRID were omitted frequently for primary antibodies and regularly for secondary antibodies. We present detailed descriptions and visual examples to help scientists, peer reviewers, and editors to publish more informative western blot figures and methods. Additional resources include a toolbox to help scientists produce more reproducible western blot data, teaching slides in English and Spanish, and an antibody reporting template.


Assuntos
Neurociências , Proteínas , Anticorpos , Western Blotting
2.
J Neurochem ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994820

RESUMO

Lysophosphatidic acid (LPA) is a bioactive phospholipid that participates in critical processes in neural development and adult brain function and is implicated in various pathophysiological conditions. Along with its six well-characterized receptors, atypical regulators of LPA signaling have also been suggested, including phospholipid phosphatase-related proteins (PLPPRs). PLPPRs have been mostly studied in the developing brain where they control LPA-dependent axon guidance, cortical network hyperexcitability, and glutamatergic neurotransmission. PLPPR4 and PLPPR3 represent two closely related proteins reported to localize predominantly in dendrites and axons, respectively, and differ in their developmental expression patterns. Herein, we have revised the expression patterns of PLPPRs in the cerebellum, dorsal and ventral hippocampus, prefrontal cortex (PFC), nucleus accumbens, and striatum during development and in the adult using quantitative PCR. Expression patterns of Plppr2,4 and 5 were consistent with previous studies, whereas Plppr3 and Plppr1 exhibited a unique expression profile in nucleus accumbens (NAc) and striatum in later developmental and adult stages, which we verified at the protein level for PLPPR3. To investigate neuron type-specific expression at the single cell level, we developed a bioinformatic tool to analyze recent single-cell RNA-sequencing data in the cerebral cortex and hippocampus of adult mice. Our analysis revealed a widespread but also selective adult neuron-type expression with higher expression levels of Plppr3, Plppr1, and Plppr5 in GABAergic and Plppr4 and Plppr2 in glutamatergic neurons. PLPPR4 has been identified as a post-synaptic modulator of LPA levels in glutamatergic synapses operating via an uptake mechanism, to control LPA-dependent cortical network hyperexcitability. Using subcellular fractionation experiments, we found that both PLPPR4 and PLPPR3 are co-expressed in adult synaptosomal membranes. Furthermore, flow cytometry experiments in HEK293 cells showed comparable LPA uptake by PLPPR4 and PLPPR3, whereas PLPRR3, but not PLPPR4, induced also uptake of monoacylglycerol, the dephosphorylation product of LPA. We propose that synaptic LPA may be subject to both pre-synaptic and post-synaptic mechanisms of regulation by PLPPRs in addition to LPARs in developing and adult synapses.

4.
Front Mol Neurosci ; 15: 984655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187351

RESUMO

Neuronal plasma membrane proteins are essential for integrating cell extrinsic and cell intrinsic signals to orchestrate neuronal differentiation, growth and plasticity in the developing and adult nervous system. Here, we shed light on the family of plasma membrane proteins phospholipid phosphatase-related proteins (PLPPRs) (alternative name, PRGs; plasticity-related genes) that fine-tune neuronal growth and synaptic transmission in the central nervous system. Several studies uncovered essential functions of PLPPRs in filopodia formation, axon guidance and branching during nervous system development and regeneration, as well as in the control of dendritic spine number and excitability. Loss of PLPPR expression in knockout mice increases susceptibility to seizures, and results in defects in sensory information processing, development of psychiatric disorders, stress-related behaviors and abnormal social interaction. However, the exact function of PLPPRs in the context of neurological diseases is largely unclear. Although initially described as active lysophosphatidic acid (LPA) ecto-phosphatases that regulate the levels of this extracellular bioactive lipid, PLPPRs lack catalytic activity against LPA. Nevertheless, they emerge as atypical LPA modulators, by regulating LPA mediated signaling processes. In this review, we summarize the effects of this protein family on cellular morphology, generation and maintenance of cellular protrusions as well as highlight their known neuronal functions and phenotypes of KO mice. We discuss the molecular mechanisms of PLPPRs including the deployment of phospholipids, actin-cytoskeleton and small GTPase signaling pathways, with a focus on identifying gaps in our knowledge to stimulate interest in this understudied protein family.

5.
J Psychopharmacol ; 33(12): 1512-1523, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31208275

RESUMO

BACKGROUND: Individual vulnerability to stress manifests in the interaction of innate properties and environment. There is a growing interest in the individual variability in vulnerability to stress and how it contributes to the development of psychiatric disorders. Intake of palatable substances is often measured in animal models. We have previously demonstrated that the consumption of sucrose solution is a stable trait in rats. AIMS: The present study aimed to compare the sensitivity of rats with high vs low liquid sucrose consumption to chronic variable stress and the stress effect on behavioural sensitization to amphetamine. METHODS: Male Wistar rats were subjected to a chronic stress regimen and subsequent repeated treatment with amphetamine (1 mg/kg, intraperitoneally). Fifty-kHz ultrasonic vocalizations, locomotor activity and stereotypies were measured. RESULTS: In no-stress baseline conditions, the behavioural response to acute amphetamine was similar in rats with high vs low sucrose consumption. Prior chronic stress potentiated the effect of amphetamine only in rats with high sucrose consumption. Behavioural sensitization to repeated administration of amphetamine was observed in non-stressed rats with lower sucrose preference, but not in the respective stressed group that had increased monoamine turnover in the nucleus accumbens. In contrast, in rats with high sucrose preference the amphetamine sensitization effect was prevalent in stressed rats, but not in non-stressed animals. INTERPRETATION: Chronic stress can change the psychostimulant effect but this depends on the inherent reward sensitivity of the animal. Trait-wise, sucrose intake reflects vulnerability to chronic stress and may interact with the development of addiction.


Assuntos
Anfetamina/administração & dosagem , Estimulantes do Sistema Nervoso Central/administração & dosagem , Estresse Psicológico/psicologia , Sacarose/administração & dosagem , Anfetamina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Wistar , Recompensa , Comportamento Estereotipado/efeitos dos fármacos
6.
Nat Commun ; 10(1): 486, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700723

RESUMO

Drebrin (DBN) regulates cytoskeletal functions during neuronal development, and is thought to contribute to structural and functional synaptic changes associated with aging and Alzheimer's disease. Here we show that DBN coordinates stress signalling with cytoskeletal dynamics, via a mechanism involving kinase ataxia-telangiectasia mutated (ATM). An excess of reactive oxygen species (ROS) stimulates ATM-dependent phosphorylation of DBN at serine-647, which enhances protein stability and accounts for improved stress resilience in dendritic spines. We generated a humanized DBN Caenorhabditis elegans model and show that a phospho-DBN mutant disrupts the protective ATM effect on lifespan under sustained oxidative stress. Our data indicate a master regulatory function of ATM-DBN in integrating cytosolic stress-induced signalling with the dynamics of actin remodelling to provide protection from synapse dysfunction and ROS-triggered reduced lifespan. They further suggest that DBN protein abundance governs actin filament stability to contribute to the consequences of oxidative stress in physiological and pathological conditions.


Assuntos
Actinas/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Estresse Oxidativo , Actinas/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Motivos de Aminoácidos , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Caenorhabditis elegans , Células Cultivadas , Espinhas Dendríticas/genética , Espinhas Dendríticas/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/genética , Fosforilação , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
7.
Cell Rep ; 29(7): 2028-2040.e8, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31722215

RESUMO

In developing neurons, phosphoinositide 3-kinases (PI3Ks) control axon growth and branching by positively regulating PI3K/PI(3,4,5)P3, but how neurons are able to generate sufficient PI(3,4,5)P3 in the presence of high levels of the antagonizing phosphatase PTEN is difficult to reconcile. We find that normal axon morphogenesis involves homeostasis of elongation and branch growth controlled by accumulation of PI(3,4,5)P3 through PTEN inhibition. We identify a plasma membrane-localized protein-protein interaction of PTEN with plasticity-related gene 2 (PRG2). PRG2 stabilizes membrane PI(3,4,5)P3 by inhibiting PTEN and localizes in nanoclusters along axon membranes when neurons initiate their complex branching behavior. We demonstrate that PRG2 is both sufficient and necessary to account for the ability of neurons to generate axon filopodia and branches in dependence on PI3K/PI(3,4,5)P3 and PTEN. Our data indicate that PRG2 is part of a neuronal growth program that induces collateral branch growth in axons by conferring local inhibition of PTEN.


Assuntos
Axônios/metabolismo , Proteínas de Membrana/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Animais , Células COS , Chlorocebus aethiops , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA