Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893521

RESUMO

The PD-1/PD-L1 complex is an immune checkpoint responsible for regulating the natural immune response, but also allows tumors to escape immune surveillance. Inhibition of the PD-1/PD-L1 axis positively contributes to the efficacy of cancer treatment. The only available therapeutics targeting PD-1/PD-L1 are monoclonal antibody-based drugs, which have several limitations. Therefore, small molecule compounds are emerging as an attractive alternative that can potentially overcome the drawbacks of mAb-based therapy. In this article, we present a novel class of small molecule compounds based on the terphenyl scaffold that bind to PD-L1. The general architecture of the presented structures is characterized by axial symmetry and consists of three elements: an m-terphenyl core, an additional aromatic ring, and a solubilizing agent. Using molecular docking, we designed a series of final compounds, which were subsequently synthesized and tested in HTRF assay and NMR binding assay to evaluate their activity. In addition, we performed an in-depth analysis of the mutual arrangement of the phenyl rings of the terphenyl core within the binding pocket of PD-L1 and found several correlations between the plane angle values and the affinity of the compounds towards the protein.


Assuntos
Antígeno B7-H1 , Simulação de Acoplamento Molecular , Receptor de Morte Celular Programada 1 , Ligação Proteica , Compostos de Terfenil , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Antígeno B7-H1/química , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/química , Humanos , Compostos de Terfenil/química , Compostos de Terfenil/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Inibidores de Checkpoint Imunológico/química , Inibidores de Checkpoint Imunológico/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade , Sítios de Ligação
2.
ACS Med Chem Lett ; 15(1): 36-44, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38229762

RESUMO

Although heavily studied, the subject of anti-PD-L1 small-molecule inhibitors is still elusive. Here we present a systematic overview of the principles behind successful anti-PD-L1 small-molecule inhibitor design on the example of the m-terphenyl scaffold, with a particular focus on the neglected influence of the solubilizer tag on the overall affinity toward PD-L1. The inhibitor developed according to the proposed guidelines was characterized through its potency in blocking PD-1/PD-L1 complex formation in homogeneous time-resolved fluorescence and cell-based assays. The affinity is also explained based on the crystal structure of the inhibitor itself and its costructure with PD-L1 as well as a molecular modeling study. Our results structuralize the knowledge related to the strong pharmacophore feature of the m-terphenyl scaffold preferential geometry and the more complex role of the solubilizer tag in PD-L1 homodimer stabilization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA