Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
PLoS Pathog ; 20(7): e1012338, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008527

RESUMO

Recently published near full-length KSHV genomes from a Cameroon Kaposi sarcoma case-control study showed strong evidence of viral recombination and mixed infections, but no sequence variations associated with disease. Using the same methodology, an additional 102 KSHV genomes from 76 individuals with KSHV-associated diseases have been sequenced. Diagnoses comprise all KSHV-associated diseases (KAD): Kaposi sarcoma (KS), primary effusion lymphoma (PEL), KSHV-associated large cell lymphoma (KSHV-LCL), a type of multicentric Castleman disease (KSHV-MCD), and KSHV inflammatory cytokine syndrome (KICS). Participants originated from 22 different countries, providing the opportunity to obtain new near full-length sequences of a wide diversity of KSHV genomes. These include near full-length sequence of genomes with KSHV K1 subtypes A, B, C, and F as well as subtype E, for which no full sequence was previously available. High levels of recombination were observed. Fourteen individuals (18%) showed evidence of infection with multiple KSHV variants (from two to four unique genomes). Twenty-six comparisons of sequences, obtained from various sampling sites including PBMC, tissue biopsies, oral fluids, and effusions in the same participants, identified near complete genome conservation between different biological compartments. Polymorphisms were identified in coding and non-coding regions, including indels in the K3 and K15 genes and sequence inversions here reported for the first time. One such polymorphism in KSHV ORF46, specific to the KSHV K1 subtype E2, encoded a mutation in the leucine loop extension of the uracil DNA glycosylase that results in alteration of biochemical functions of this protein. This confirms that KSHV sequence variations can have functional consequences warranting further investigation. This study represents the largest and most diverse analysis of KSHV genome sequences to date among individuals with KAD and provides important new information on global KSHV genomics.

2.
EMBO Rep ; 25(3): 1541-1569, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38263330

RESUMO

To globally profile circRNAs, we employ RNA-Sequencing paired with chimeric junction analysis for alpha-, beta-, and gamma-herpesvirus infection. We find circRNAs are, as a population, resistant to host shutoff. We validate this observation using ectopic expression assays of human and murine herpesvirus endoribonucleases. During lytic infection, four circRNAs are commonly induced across all subfamilies of human herpesviruses, suggesting a shared mechanism of regulation. We test one such mechanism, namely how interferon-stimulation influences circRNA expression. 67 circRNAs are upregulated by either interferon-ß or -γ treatment, with half of these also upregulated during lytic infection. Using gain and loss of function studies we find an interferon-stimulated circRNA, circRELL1, inhibits lytic Herpes Simplex Virus-1 infection. We previously reported circRELL1 inhibits lytic Kaposi sarcoma-associated herpesvirus infection, suggesting a pan-herpesvirus antiviral activity. We propose a two-pronged model in which interferon-stimulated genes may encode both mRNA and circRNA with antiviral activity. This is critical in cases of host shutoff, such as alpha- and gamma-herpesvirus infection, where the mRNA products are degraded but circRNAs escape.


Assuntos
Herpes Simples , Herpesviridae , Humanos , Camundongos , Animais , RNA Circular , Interferons , RNA Mensageiro , Simplexvirus , Antivirais
3.
Clin Microbiol Rev ; : e0002223, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899877

RESUMO

SUMMARYWithin weeks of the first report of acquired immunodeficiency syndrome (AIDS) in 1981, it was observed that these patients often had Kaposi sarcoma (KS), a hitherto rarely seen skin tumor in the USA. It soon became apparent that AIDS was also associated with an increased incidence of high-grade lymphomas caused by Epstein-Barr virus (EBV). The association of AIDS with KS remained a mystery for more than a decade until Kaposi sarcoma-associated herpesvirus (KSHV) was discovered and found to be the cause of KS. KSHV was subsequently found to cause several other diseases associated with AIDS and human immunodeficiency virus (HIV) infection. People living with HIV/AIDS continue to have an increased incidence of certain cancers, and many of these cancers are caused by EBV and/or KSHV. In this review, we discuss the epidemiology, virology, pathogenesis, clinical manifestations, and treatment of cancers caused by EBV and KSHV in persons living with HIV.

4.
J Virol ; 96(10): e0002722, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35481781

RESUMO

Noncanonical NF-κB signaling is activated in B cells via the tumor necrosis factor (TNF) receptor superfamily members CD40, lymphotoxin ß receptor (LTßR), and B-cell-activating factor receptor (BAFF-R). The noncanonical pathway is required at multiple stages of B cell maturation and differentiation, including the germinal center reaction. However, the role of this pathway in gammaherpesvirus latency is not well understood. Murine gammaherpesvirus 68 (MHV68) is a genetically tractable system used to define pathogenic determinants. Mice lacking the BAFF-R exhibit defects in splenic follicle formation and are greatly reduced for MHV68 latency. We report a novel approach to disrupt noncanonical NF-κB signaling exclusively in cells infected with MHV68. We engineered a recombinant virus that expresses a dominant negative form of IκB kinase α (IKKα), named IKKα-SA, with S176A and S180A mutations that prevent phosphorylation by NF-κB-inducing kinase (NIK). We controlled for the transgene insertion by introducing two all-frame stop codons into the IKKα-SA gene. The IKKα-SA mutant but not the IKKα-SA.STOP control virus impaired LTßR-mediated activation of NF-κB p52 upon fibroblast infection. IKKα-SA expression did not impact replication in primary fibroblasts or in the lungs of mice following intranasal inoculation. However, the IKKα-SA mutant was severely defective in the colonization of the spleen and in the establishment of latency compared to the IKKα-SA.STOP control and wild-type (WT) MHV68 at 16 days postinfection (dpi). Reactivation was undetectable in splenocytes infected with the IKKα-SA mutant, but reactivation in peritoneal cells was not impacted by IKKα-SA. Taken together, the noncanonical NF-κB signaling pathway is essential for the establishment of latency in the secondary lymphoid organs of mice infected with the murine gammaherpesvirus pathogen MHV68. IMPORTANCE The latency programs of the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) are associated with B cell lymphomas. It is critical to understand the signaling pathways that are used by gammaherpesviruses to establish and maintain latency in primary B cells. We used a novel approach to block noncanonical NF-κB signaling only in the infected cells of mice. We generated a recombinant virus that expresses a dominant negative mutant of IKKα that is nonresponsive to upstream activation. Latency was reduced in a route- and cell type-dependent manner in mice infected with this recombinant virus. These findings identify a significant role for the noncanonical NF-κB signaling pathway that might provide a novel target to prevent latent infection of B cells with oncogenic gammaherpesviruses.


Assuntos
Infecções por Herpesviridae , Quinase I-kappa B , NF-kappa B , Rhadinovirus , Latência Viral , Animais , Infecções por Herpesviridae/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Rhadinovirus/fisiologia , Transdução de Sinais , Latência Viral/genética
5.
J Transl Med ; 21(1): 653, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740179

RESUMO

BACKGROUND: Kaposi sarcoma (KS) is a multicentric tumor caused by Kaposi sarcoma herpesvirus (KSHV) that leads to morbidity and mortality among people with HIV worldwide. KS commonly involves the skin but can occur in the gastrointestinal tract (GI) in severe cases. METHODS: RNA sequencing was used to compare the cellular and KSHV gene expression signatures of skin and GI KS lesions in 44 paired samples from 19 participants with KS alone or with concurrent KSHV-associated diseases. Analyses of KSHV expression from KS lesions identified transcriptionally active areas of the viral genome. RESULTS: The transcript of an essential viral lytic gene, ORF75, was detected in 91% of KS lesions. Analyses of host genes identified 370 differentially expressed genes (DEGs) unique to skin KS and 58 DEGs unique to GI KS lesions as compared to normal tissue. Interleukin (IL)-6 and IL-10 gene expression were higher in skin lesions as compared to normal skin but not in GI KS lesions. Twenty-six cellular genes were differentially expressed in both skin and GI KS tissues: these included Fms-related tyrosine kinase 4 (FLT4), encoding an angiogenic receptor, and Stanniocalcin 1 (STC1), a secreted glycoprotein. FLT4 and STC1 were further investigated in functional studies using primary lymphatic endothelial cells (LECs). In these models, KSHV infection of LECs led to increased tubule formation that was impaired upon knock-down of STC1 or FLT4. CONCLUSIONS: This study of transcriptional profiling of KS tissue provides novel insights into the characteristics and pathogenesis of this unique virus-driven neoplasm.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Neoplasias Cutâneas , Humanos , Sarcoma de Kaposi/genética , Células Endoteliais , Herpesvirus Humano 8/genética , Pele , Interleucina-6
6.
PLoS Pathog ; 17(4): e1009560, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33930088

RESUMO

Herpes-Simplex Virus 1 (HSV-1) infects most humans when they are young, sometimes with fatal consequences. Gene expression occurs in a temporal order upon lytic HSV-1 infection: immediate early (IE) genes are expressed, then early (E) genes, followed by late (L) genes. During this infection cycle, the HSV-1 genome has the potential for exposure to APOBEC3 (A3) proteins, a family of cytidine deaminases that cause C>U mutations on single-stranded DNA (ssDNA), often resulting in a C>T transition. We developed a computational model for the mutational pressure of A3 on the lytic cycle of HSV-1 to determine which viral kinetic gene class is most vulnerable to A3 mutations. Using in silico stochastic methods, we simulated the infectious cycle under varying intensities of A3 mutational pressure. We found that the IE and E genes are more vulnerable to A3 than L genes. We validated this model by analyzing the A3 evolutionary footprints in 25 HSV-1 isolates. We find that IE and E genes have evolved to underrepresent A3 hotspot motifs more so than L genes, consistent with greater selection pressure on IE and E genes. We extend this model to two-step infections, such as those of polyomavirus, and find that the same pattern holds for over 25 human Polyomavirus (HPyVs) genomes. Genes expressed earlier during infection are more vulnerable to mutations than those expressed later.


Assuntos
Desaminases APOBEC/fisiologia , Herpesvirus Humano 1/fisiologia , Proteínas Imediatamente Precoces/genética , Mutagênese/genética , Polyomavirus/fisiologia , Algoritmos , Regulação Viral da Expressão Gênica , Genes Precoces/genética , Herpes Simples/genética , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidade , Interações Hospedeiro-Patógeno/genética , Humanos , Modelos Teóricos , Mutação , Polyomavirus/genética , Polyomavirus/patogenicidade , Infecções por Polyomavirus/genética , Infecções por Polyomavirus/virologia , Replicação Viral/genética
7.
PLoS Pathog ; 15(12): e1008192, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31809522

RESUMO

The hypoxia-inducible factor 1 alpha (HIF1α) protein and the hypoxic microenvironment are critical for infection and pathogenesis by the oncogenic gammaherpesviruses (γHV), Kaposi sarcoma herpes virus (KSHV) and Epstein-Barr virus (EBV). However, understanding the role of HIF1α during the virus life cycle and its biological relevance in the context of host has been challenging due to the lack of animal models for human γHV. To study the role of HIF1α, we employed the murine gammaherpesvirus 68 (MHV68), a rodent pathogen that readily infects laboratory mice. We show that MHV68 infection induces HIF1α protein and HIF1α-responsive gene expression in permissive cells. siRNA silencing or drug-inhibition of HIF1α reduce virus production due to a global downregulation of viral gene expression. Most notable was the marked decrease in many viral genes bearing hypoxia-responsive elements (HREs) such as the viral G-Protein Coupled Receptor (vGPCR), which is known to activate HIF1α transcriptional activity during KSHV infection. We found that the promoter of MHV68 ORF74 is responsive to HIF1α and MHV-68 RTA. Moreover, Intranasal infection of HIF1αLoxP/LoxP mice with MHV68 expressing Cre- recombinase impaired virus expansion during early acute infection and affected lytic reactivation in the splenocytes explanted from mice. Low oxygen concentrations accelerated lytic reactivation and enhanced virus production in MHV68 infected splenocytes. Thus, we conclude that HIF1α plays a critical role in promoting virus replication and reactivation from latency by impacting viral gene expression. Our results highlight the importance of the mutual interactions of the oxygen-sensing machinery and gammaherpesviruses in viral replication and pathogenesis.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Infecções por Herpesviridae/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Latência Viral/fisiologia , Replicação Viral/fisiologia , Animais , Camundongos , Rhadinovirus/metabolismo
9.
PLoS Pathog ; 14(2): e1006843, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29390024

RESUMO

Gammaherpesviruses encode proteins with homology to the cellular purine metabolic enzyme formyl-glycinamide-phosphoribosyl-amidotransferase (FGARAT), but the role of these viral FGARATs (vFGARATs) in the pathogenesis of a natural host has not been investigated. We report a novel role for the ORF75A vFGARAT of murine gammaherpesvirus 68 (MHV68) in infectious virion production and colonization of mice. MHV68 mutants with premature stop codons in orf75A exhibited a log reduction in acute replication in the lungs after intranasal infection, which preceded a defect in colonization of multiple host reservoirs including the mediastinal lymph nodes, peripheral blood mononuclear cells, and the spleen. Intraperitoneal infection rescued splenic latency, but not reactivation. The 75A.stop virus also exhibited defective replication in primary fibroblast and macrophage cells. Viruses produced in the absence of ORF75A were characterized by an increase in the ratio of particles to PFU. In the next round of infection this led to the alteration of early events in lytic replication including the deposition of the ORF75C tegument protein, the accelerated kinetics of viral gene expression, and induction of TNFα release and cell death. Infecting cells to deliver equivalent genomes revealed that ORF75A was required for initiating early events in infection. In contrast with the numerous phenotypes observed in the absence of ORF75A, ORF75B was dispensable for replication and pathogenesis. These studies reveal that murine rhadinovirus vFGARAT family members ORF75A and ORF75C have evolved to perform divergent functions that promote replication and colonization of the host.


Assuntos
Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/virologia , Pulmão/virologia , Macrófagos/virologia , Fases de Leitura Aberta , Baço/virologia , Proteínas Virais/metabolismo , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Códon sem Sentido , DNA Recombinante/metabolismo , DNA Viral/metabolismo , Embrião de Mamíferos/citologia , Gammaherpesvirinae/crescimento & desenvolvimento , Gammaherpesvirinae/patogenicidade , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/patologia , Pulmão/imunologia , Pulmão/patologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Filogenia , Baço/imunologia , Baço/patologia , Carga Viral , Proteínas Virais/genética , Latência Viral , Replicação Viral
10.
J Biol Chem ; 292(39): 16257-16266, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28821622

RESUMO

Gammaherpesviruses (γHVs) have a dynamic strategy for lifelong persistence, involving productive infection, latency, and intermittent reactivation. In latency reservoirs, such as B lymphocytes, γHVs exist as viral episomes and express few viral genes. Although the ability of γHV to reactivate from latency and re-enter the lytic phase is challenging to investigate and control, it is known that the γHV replication and transcription activator (RTA) can promote lytic reactivation. In this study, we provide first evidence that RTA of murine γΗV68 (MHV68) selectively binds and enhances the activity of tyrosine-phosphorylated host STAT3. STAT3 is a transcription factor classically activated by specific tyrosine 705 phosphorylation (pTyr705-STAT3) in response to cytokine stimulation. pTyr705-STAT3 forms a dimer that avidly binds a consensus target site in the promoters of regulated genes, and our results indicate that RTA cooperatively enhances the ability of pTyr705-STAT3 to induce expression of a STAT3-responsive reporter gene. As indicated by coimmunoprecipitation, in latently infected B cells that are stimulated to reactivate MHV68, RTA bound specifically to endogenous pTyr705-STAT3. An in vitro binding assay confirmed that RTA selectively recognizes pTyr705-STAT3 and indicated that the C-terminal transactivation domain of RTA was required for enhancing STAT3-directed gene expression. The cooperation of these transcription factors may influence both viral and host genes. During MHV68 de novo infection, pTyr705-STAT3 promoted the temporal expression of ORF59, a viral replication protein. Our results demonstrate that MHV68 RTA specifically recognizes and recruits activated pTyr705-STAT3 during the lytic phase of infection.


Assuntos
Linfócitos B/metabolismo , Regulação da Expressão Gênica , Proteínas Imediatamente Precoces/metabolismo , Interleucina-6/metabolismo , Receptores de Interleucina-6/agonistas , Rhadinovirus/fisiologia , Fator de Transcrição STAT3/agonistas , Transativadores/metabolismo , Substituição de Aminoácidos , Animais , Linfócitos B/imunologia , Linfócitos B/virologia , Linhagem Celular , Dimerização , Genes Reporter , Humanos , Proteínas Imediatamente Precoces/química , Proteínas Imediatamente Precoces/genética , Camundongos , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Receptores de Interleucina-6/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Rhadinovirus/imunologia , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Transativadores/química , Transativadores/genética , Tirosina/metabolismo , Ativação Viral
11.
J Virol ; 89(6): 3366-79, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25589640

RESUMO

UNLABELLED: Uracil DNA glycosylases (UNG) are highly conserved proteins that preserve DNA fidelity by catalyzing the removal of mutagenic uracils. All herpesviruses encode a viral UNG (vUNG), and yet the role of the vUNG in a pathogenic course of gammaherpesvirus infection is not known. First, we demonstrated that the vUNG of murine gammaherpesvirus 68 (MHV68) retains the enzymatic function of host UNG in an in vitro class switch recombination assay. Next, we generated a recombinant MHV68 with a stop codon in ORF46/UNG (ΔUNG) that led to loss of UNG activity in infected cells and a replication defect in primary fibroblasts. Acute replication of MHV68ΔUNG in the lungs of infected mice was reduced 100-fold and was accompanied by a substantial delay in the establishment of splenic latency. Latency was largely, yet not fully, restored by an increase in virus inoculum or by altering the route of infection. MHV68 reactivation from latent splenocytes was not altered in the absence of the vUNG. A survey of host UNG activity in cells and tissues targeted by MHV68 indicated that the lung tissue has a lower level of enzymatic UNG activity than the spleen. Taken together, these results indicate that the vUNG plays a critical role in the replication of MHV68 in tissues with limited host UNG activity and this vUNG-dependent expansion, in turn, influences the kinetics of latency establishment in distal reservoirs. IMPORTANCE: Herpesviruses establish chronic lifelong infections using a strategy of replicative expansion, dissemination to latent reservoirs, and subsequent reactivation for transmission and spread. We examined the role of the viral uracil DNA glycosylase, a protein conserved among all herpesviruses, in replication and latency of murine gammaherpesvirus 68. We report that the viral UNG of this murine pathogen retains catalytic activity and influences replication in culture. The viral UNG was impaired for productive replication in the lung. This defect in expansion at the initial site of acute replication was associated with a substantial delay of latency establishment in the spleen. The levels of host UNG were substantially lower in the lung compared to the spleen, suggesting that herpesviruses encode a viral UNG to compensate for reduced host enzyme levels in some cell types and tissues. These data suggest that intervention at the site of initial replicative expansion can delay the establishment of latency, a hallmark of chronic herpesvirus infection.


Assuntos
Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Rhadinovirus/enzimologia , Doenças dos Roedores/virologia , Uracila-DNA Glicosidase/deficiência , Latência Viral , Replicação Viral , Animais , Feminino , Regulação Viral da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Rhadinovirus/genética , Rhadinovirus/fisiologia , Uracila-DNA Glicosidase/genética
12.
J Virol ; 89(13): 6562-74, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25855746

RESUMO

UNLABELLED: Gammaherpesviruses establish lifelong infections that are associated with the development of cancer. These viruses subvert many aspects of the innate and adaptive immune response of the host. The inflammasome, a macromolecular protein complex that controls inflammatory responses to intracellular danger signals generated by pathogens, is both activated and subverted during human gammaherpesvirus infection in culture. The impact of the inflammasome response on gammaherpesvirus replication and latency in vivo is not known. Caspase-1 is the inflammasome effector protease that cleaves the proinflammatory cytokines interleukin-1ß (IL-1ß) and IL-18. We infected caspase-1-deficient mice with murine gammaherpesvirus 68 (MHV68) and observed no impact on acute replication in the lung or latency and reactivation from latency in the spleen. This led us to examine the effect of viral infection on inflammasome responses in bone marrow-derived macrophages. We determined that infection of macrophages with MHV68 led to a robust interferon response but failed to activate caspase-1 or induce the secretion of IL-1ß. In addition, MHV68 infection led to a reduction in IL-1ß production after extrinsic lipopolysaccharide stimulation or upon coinfection with Salmonella enterica serovar Typhimurium. Interestingly, this impairment occurred at the proIL-1ß transcript level and was independent of the RTA, the viral lytic replication and transcription activator. Taken together, MHV68 impairs the inflammasome response by inhibiting IL-1ß production during the initial stages of infection. IMPORTANCE: Gammaherpesviruses persist for the lifetime of the host. To accomplish this, they must evade recognition and clearance by the immune system. The inflammasome consists of proteins that detect foreign molecules in the cell and respond by secreting proinflammatory signaling proteins that recruit immune cells to clear the infection. Unexpectedly, we found that murine gammaherpesvirus pathogenesis was not enhanced in mice lacking caspase-1, a critical inflammasome component. This led us to investigate whether the virus actively impairs the inflammasome response. We found that the inflammasome was not activated upon macrophage cell infection with murine gammaherpesvirus 68. Infection also prevented the host cell inflammasome response to other pathogen-associated molecular patterns, indicated by reduced production of the proinflammatory cytokine IL-1ß upon bacterial coinfection. Taken together, murine gammaherpesvirus impairment of the inflammatory cytokine IL-1ß in macrophages identifies one mechanism by which the virus may inhibit caspase-1-dependent immune responses in the infected animal.


Assuntos
Caspase 1/metabolismo , Caspases/metabolismo , Infecções por Herpesviridae/patologia , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Rhadinovirus/imunologia , Infecções Tumorais por Vírus/patologia , Animais , Caspase 1/deficiência , Caspases Iniciadoras , Infecções por Herpesviridae/imunologia , Interferons/metabolismo , Lipopolissacarídeos/imunologia , Pulmão/virologia , Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rhadinovirus/fisiologia , Salmonella typhimurium/imunologia , Baço/virologia , Infecções Tumorais por Vírus/imunologia , Ativação Viral , Latência Viral , Replicação Viral
13.
PLoS Pathog ; 10(1): e1003882, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24453974

RESUMO

Lytic gammaherpesvirus infection restricts host gene expression by promoting widespread degradation of cytoplasmic mRNA through the activity of the viral endonuclease SOX. Though generally assumed to be selective for cellular transcripts, the extent to which SOX impacts viral mRNA stability has remained unknown. We addressed this issue using the model murine gammaherpesvirus MHV68 and, unexpectedly, found that all stages of viral gene expression are controlled through mRNA degradation. Using both comprehensive RNA expression profiling and half-life studies we reveal that the levels of the majority of viral mRNAs but not noncoding RNAs are tempered by MHV68 SOX (muSOX) activity. The targeting of viral mRNA by muSOX is functionally significant, as it impacts intracellular viral protein abundance and progeny virion composition. In the absence of muSOX-imposed gene expression control the viral particles display increased cell surface binding and entry as well as enhanced immediate early gene expression. These phenotypes culminate in a viral replication defect in multiple cell types as well as in vivo, highlighting the importance of maintaining the appropriate balance of viral RNA during gammaherpesviral infection. This is the first example of a virus that fails to broadly discriminate between cellular and viral transcripts during host shutoff and instead uses the targeting of viral messages to fine-tune overall gene expression.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Estabilidade de RNA , RNA Mensageiro/metabolismo , Rhadinovirus/fisiologia , Vírion/metabolismo , Replicação Viral/fisiologia , Animais , Chlorocebus aethiops , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/metabolismo , Camundongos , Células NIH 3T3 , RNA Mensageiro/genética , Células Vero , Vírion/genética
14.
J Virol ; 87(6): 3597-604, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23302876

RESUMO

The secreted M1 protein of murine gammaherpesvirus 68 (MHV68) promotes effector Vß4(+) CD8(+) T cell expansion to impact virus control and immune-mediated pathologies in C57BL/6 mice, but not BALB/c mice. We report a striking increase in the number of genome-positive, IgD(-) B cells during chronic infection of both mouse strains. This suggests a novel role for M1 in influencing long-term maintenance in a major latency reservoir irrespective of the degree of Vß4(+) CD8(+) T cell expansion.


Assuntos
Linfócitos B/virologia , Imunoglobulina D/imunologia , Rhadinovirus/imunologia , Rhadinovirus/patogenicidade , Proteínas Virais/metabolismo , Latência Viral , Animais , Linfócitos B/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Virais/imunologia
15.
bioRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746347

RESUMO

Mammalian Uracil DNA glycosylase (UNG) removes uracils and initiates high-fidelity base excision repair to maintain genomic stability. During B cell development, activation-induced cytidine deaminase (AID) creates uracils that UNG processes in an error-prone fashion to accomplish immunoglobulin (Ig) somatic hypermutation (SHM) or class switch recombination (CSR). The mechanism that governs high-fidelity versus mutagenic uracil repair is not understood. The B cell tropic gammaherpesvirus (GHV) encodes a functional homolog of UNG that can process AID induced genomic uracils. GHVUNG does not support hypermutation, suggesting intrinsic properties of UNG influence repair outcome. Noting the structural divergence between the UNGs, we define the RPA interacting motif as the determinant of mutation outcome. UNG or RPA mutants unable to interact with each other, only support high-fidelity repair. In B cells, transversions at the Ig variable region are abated while CSR is supported. Thus UNG-RPA governs the generation of mutations and has implications for locus specific mutagenesis in B cells and deamination associated mutational signatures in cancer.

16.
NPJ Vaccines ; 9(1): 116, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914546

RESUMO

Gammaherpesviruses are oncogenic viruses that establish lifelong infections and are significant causes of morbidity and mortality. Vaccine strategies to limit gammaherpesvirus infection and disease are in development, but there are no FDA-approved vaccines for Epstein-Barr or Kaposi sarcoma herpesvirus. As a new approach to gammaherpesvirus vaccination, we developed and tested a replication-deficient virus (RDV) platform, using murine gammaherpesvirus 68 (MHV68), a well-established mouse model for gammaherpesvirus pathogenesis studies and preclinical therapeutic evaluations. We employed codon-shuffling-based complementation to generate revertant-free RDV lacking expression of the essential replication and transactivator protein encoded by ORF50 to arrest viral gene expression early after de novo infection. Inoculation with RDV-50.stop exposes the host to intact virion particles and leads to limited lytic gene expression in infected cells yet does not produce additional infectious particles. Prime-boost vaccination of mice with RDV-50.stop elicited virus-specific neutralizing antibody and effector T cell responses in the lung and spleen. In contrast to vaccination with heat-inactivated WT MHV68, vaccination with RDV-50.stop resulted in a near complete abolishment of virus replication in the lung 7 days post-challenge and reduction of latency establishment in the spleen 16 days post-challenge with WT MHV68. Ifnar1-/- mice, which lack the type I interferon receptor, exhibit severe disease and high mortality upon infection with WT MHV68. RDV-50.stop vaccination of Ifnar1-/- mice prevented wasting and mortality upon challenge with WT MHV68. These results demonstrate that prime-boost vaccination with a gammaherpesvirus that is unable to undergo lytic replication offers protection against acute replication, impairs the establishment of latency, and prevents severe disease upon the WT virus challenge. Our study also reveals that the ability of a gammaherpesvirus to persist in vivo despite potent pre-existing immunity is an obstacle to obtaining sterilizing immunity.

17.
mBio ; 15(2): e0299823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38170993

RESUMO

Cancers associated with the oncogenic gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus, are notable for their constitutive activation of the transcription factor signal transducer and activator of transcription 3 (STAT3). To better understand the role of STAT3 during gammaherpesvirus latency and the B cell response to infection, we used the model pathogen murine gammaherpesvirus 68 (MHV68). Genetic deletion of STAT3 in B cells of CD19cre/+Stat3f/f mice reduced peak MHV68 latency approximately sevenfold. However, infected CD19cre/+Stat3f/f mice exhibited disordered germinal centers and heightened virus-specific CD8 T cell responses compared to wild-type (WT) littermates. To circumvent the systemic immune alterations observed in the B cell-STAT3 knockout mice and more directly evaluate intrinsic roles for STAT3, we generated mixed bone marrow chimeric mice consisting of WT and STAT3 knockout B cells. We discovered a dramatic reduction in latency in STAT3 knockout B cells compared to their WT B cell counterparts in the same lymphoid organ. RNA sequencing of sorted germinal center B cells revealed that MHV68 infection shifts the gene signature toward proliferation and away from type I and type II IFN responses. Loss of STAT3 largely reversed the virus-driven transcriptional shift without impacting the viral gene expression program. STAT3 promoted B cell processes of the germinal center, including IL-21-stimulated downregulation of surface CD23 on B cells infected with MHV68 or EBV. Together, our data provide mechanistic insights into the role of STAT3 as a latency determinant in B cells for oncogenic gammaherpesviruses.IMPORTANCEThere are no directed therapies to the latency program of the human gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus. Activated host factor signal transducer and activator of transcription 3 (STAT3) is a hallmark of cancers caused by these viruses. We applied the murine gammaherpesvirus pathogen system to explore STAT3 function upon primary B cell infection in the host. Since STAT3 deletion in all CD19+ B cells of infected mice led to altered B and T cell responses, we generated chimeric mice with both normal and STAT3-deleted B cells. B cells lacking STAT3 failed to support virus latency compared to normal B cells from the same infected animal. Loss of STAT3 impaired B cell proliferation and differentiation and led to a striking upregulation of interferon-stimulated genes. These findings expand our understanding of STAT3-dependent processes that are key to its function as a pro-viral latency determinant for oncogenic gammaherpesviruses in B cells and may provide novel therapeutic targets.


Assuntos
Infecções por Vírus Epstein-Barr , Gammaherpesvirinae , Infecções por Herpesviridae , Herpesvirus Humano 8 , Rhadinovirus , Sarcoma de Kaposi , Animais , Humanos , Camundongos , Gammaherpesvirinae/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 8/metabolismo , Camundongos Endogâmicos C57BL , Rhadinovirus/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Latência Viral/genética
18.
J Virol ; 86(8): 4340-57, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22318145

RESUMO

We applied a custom tiled microarray to examine murine gammaherpesvirus 68 (MHV68) polyadenylated transcript expression in a time course of de novo infection of fibroblast cells and following phorbol ester-mediated reactivation from a latently infected B cell line. During de novo infection, all open reading frames (ORFs) were transcribed and clustered into four major temporal groups that were overlapping yet distinct from clusters based on the phorbol ester-stimulated B cell reactivation time course. High-density transcript analysis at 2-h intervals during de novo infection mapped gene boundaries with a 20-nucleotide resolution, including a previously undefined ORF73 transcript and the MHV68 ORF63 homolog of Kaposi's sarcoma-associated herpesvirus vNLRP1. ORF6 transcript initiation was mapped by tiled array and confirmed by 5' rapid amplification of cDNA ends. The ∼1.3-kb region upstream of ORF6 was responsive to lytic infection and MHV68 RTA, identifying a novel RTA-responsive promoter. Transcription in intergenic regions consistent with the previously defined expressed genomic regions was detected during both types of productive infection. We conclude that the MHV68 transcriptome is dynamic and distinct during de novo fibroblast infection and upon phorbol ester-stimulated B cell reactivation, highlighting the need to evaluate further transcript structure and the context-dependent molecular events that govern viral gene expression during chronic infection.


Assuntos
Gammaherpesvirinae/genética , Perfilação da Expressão Gênica , Transcriptoma , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linfócitos B/virologia , Linhagem Celular , Análise por Conglomerados , Biologia Computacional , Fibroblastos/metabolismo , Fibroblastos/virologia , Regulação Viral da Expressão Gênica , Genoma Viral , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fases de Leitura Aberta , Elementos Reguladores de Transcrição , Reprodutibilidade dos Testes , Acetato de Tetradecanoilforbol/farmacologia
19.
bioRxiv ; 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37398059

RESUMO

Herpesviruses are large double-stranded DNA viruses that encode core replication proteins and accessory factors involved in nucleotide metabolism and DNA repair. Mammalian Uracil-DNA glycosylases (UNG) excise deleterious uracil residues from their genomic DNA. Each herpesvirus UNG studied to date has demonstrated conservation of the enzymatic function to excise uracil residues from DNA. We previously reported that a murine gammaherpesvirus (MHV68) with a stop codon in ORF46 (ORF46.stop) that encodes for vUNG was defective in lytic replication and latency in vivo. However, a mutant virus that expressed a catalytically inactive vUNG (ORF46.CM) had no replication defect, unless coupled with additional mutations in the catalytic motif of the viral dUTPase (ORF54.CM). The disparate phenotypes observed in the vUNG mutants led us to explore the non-enzymatic properties of vUNG. Immunoprecipitation of vUNG followed by mass spectrometry in MHV68-infected fibroblasts identified a complex comprised of the cognate viral DNA polymerase, vPOL encoded by ORF9 , and the viral DNA polymerase processivity factor, vPPF encoded by ORF59 . MHV68 vUNG colocalized with vPOL and vPPF in subnuclear structures consistent with viral replication compartments. In reciprocal co-immunoprecipitations, the vUNG formed a complex with the vPOL and vPPF upon transfection with either factor alone, or in combination. Last, we determined that key catalytic residues of vUNG are not required for interactions with vPOL and vPPF upon transfection or in the context of infection. We conclude that the vUNG of MHV68 associates with vPOL and vPPF independently of its catalytic activity. IMPORTANCE: Gammaherpesviruses encode a uracil-DNA glycosylase (vUNG) that is presumed to excise uracil residues from viral genomes. We previously identified the vUNG enzymatic activity, but not the protein itself, as dispensable for gammaherpesvirus replication in vivo . In this study, we report a non-enzymatic role for the viral UNG of a murine gammaherpesvirus to form a complex with two key components of the viral DNA replication machinery. Understanding the role of the vUNG in this viral DNA replication complex may inform the development of antiviral drugs that combat gammaherpesvirus associated cancers.

20.
DNA Repair (Amst) ; 128: 103515, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37315375

RESUMO

Uracil DNA glycosylase (UNG) removes mutagenic uracil base from DNA to initiate base excision repair (BER). The result is an abasic site (AP site) that is further processed by the high-fidelity BER pathway to complete repair and maintain genome integrity. The gammaherpesviruses (GHVs), human Kaposi sarcoma herpesvirus (KSHV), Epstein-Barr virus (EBV), and murine gammaherpesvirus 68 (MHV68) encode functional UNGs that have a role in viral genome replication. Mammalian and GHVs UNG share overall structure and sequence similarity except for a divergent amino-terminal domain and a leucine loop motif in the DNA binding domain that varies in sequence and length. To determine if divergent domains contribute to functional differences between GHV and mammalian UNGs, we analyzed their roles in DNA interaction and catalysis. By utilizing chimeric UNGs with swapped domains we found that the leucine loop in GHV, but not mammalian UNGs facilitates interaction with AP sites and that the amino-terminal domain modulates this interaction. We also found that the leucine loop structure contributes to differential UDGase activity on uracil in single- versus double-stranded DNA. Taken together we demonstrate that the GHV UNGs evolved divergent domains from their mammalian counterparts that contribute to differential biochemical properties from their mammalian counterparts.


Assuntos
Infecções por Vírus Epstein-Barr , Uracila-DNA Glicosidase , Animais , Camundongos , Humanos , Uracila-DNA Glicosidase/metabolismo , Leucina/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , DNA/metabolismo , Uracila , Reparo do DNA , Mamíferos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA