Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(15): 6772-6780, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38577774

RESUMO

The quality of chemical analysis is an important aspect of passive sampling-based environmental assessments. The present study reports on a proficiency testing program for the chemical analysis of hydrophobic organic compounds in silicone and low-density polyethylene (LDPE) passive samplers and hydrophilic compounds in polar organic chemical integrative samplers. The median between-laboratory coefficients of variation (CVs) of hydrophobic compound concentrations in the polymer phase were 33% (silicone) and 38% (LDPE), similar to the CVs obtained in four earlier rounds of this program. The median CV over all rounds was 32%. Much higher variabilities were observed for hydrophilic compound concentrations in the sorbent: 50% for the untransformed data and a factor of 1.6 after log transformation. Limiting the data to the best performing laboratories did not result in less variability. Data quality for hydrophilic compounds was only weakly related to the use of structurally identical internal standards and was unrelated to the choice of extraction solvent and extraction time. Standard deviations of the aqueous concentration estimates for hydrophobic compound sampling by the best performing laboratories were 0.21 log units for silicone and 0.27 log units for LDPE (factors of 1.6 to 1.9). The implications are that proficiency testing programs may give more realistic estimates of uncertainties in chemical analysis than within-laboratory quality control programs and that these high uncertainties should be taken into account in environmental assessments.


Assuntos
Polietileno , Poluentes Químicos da Água , Polietileno/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos , Silicones
2.
Anal Bioanal Chem ; 416(11): 2683-2689, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38206347

RESUMO

Exposure to particles from air pollution has been associated with kidney disease; however, the underlying biological mechanisms are incompletely understood. Inhaled particles can gain access to the circulation and, depending on their size, pass into urine, raising the possibility that particles may also sequester in the kidney and directly alter renal function. This study optimised an inductively coupled plasma mass spectrometry (ICP-MS) method to investigate the size dependency of particle accumulation in the kidneys of mice following pulmonary instillation (0.8 mg in total over 4 weeks) to gold nanoparticles (2, 3-4, 7-8, 14 or 40 nm or saline control). Due to the smallest particle sizes being below the limit of detection in single particle mode, ICP-MS was operated in total quantification mode. Gold was detected in all matrices of interest (blood, urine and kidney) from animals treated with all sizes of gold nanoparticles, at orders of magnitude higher than the methodological limit of detection in biological matrices (0.013 ng/mL). A size-dependent effect was observed, with smaller particles leading to greater levels of accumulation in tissues. This study highlights the value of a robust and reliable method by ICP-MS to detect extremely low levels of gold in biological samples for indirect particle tracing. The finding that nano-sized particles translocate from the lung to the kidney may provide a biological explanation for the associations between air pollution and kidney disease.


Assuntos
Poluição do Ar , Nefropatias , Nanopartículas Metálicas , Nanopartículas , Camundongos , Animais , Ouro/química , Nanopartículas Metálicas/química , Tamanho da Partícula , Espectrometria de Massas
3.
Arch Toxicol ; 89(9): 1469-95, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25975987

RESUMO

The increasing use of nanoparticles in products likely results in increased exposure of both workers and consumers. Because of their small size, there are concerns that nanoparticles unintentionally cross the barriers of the human body. Several in vivo rodent studies show that, dependent on the exposure route, time, and concentration, and their characteristics, nanoparticles can cross the lung, gut, skin, and placental barrier. This review aims to evaluate the performance of in vitro models that mimic the barriers of the human body, with a focus on the lung, gut, skin, and placental barrier. For these barriers, in vitro models of varying complexity are available, ranging from single-cell-type monolayer to multi-cell (3D) models. Only a few studies are available that allow comparison of the in vitro translocation to in vivo data. This situation could change since the availability of analytical detection techniques is no longer a limiting factor for this comparison. We conclude that to further develop in vitro models to be used in risk assessment, the current strategy to improve the models to more closely mimic the human situation by using co-cultures of different cell types and microfluidic approaches to better control the tissue microenvironments are essential. At the current state of the art, the in vitro models do not yet allow prediction of absolute transfer rates but they do support the definition of relative transfer rates and can thus help to reduce animal testing by setting priorities for subsequent in vivo testing.


Assuntos
Alternativas aos Testes com Animais , Modelos Biológicos , Nanopartículas/metabolismo , Animais , Técnicas de Cocultura , Humanos , Técnicas Analíticas Microfluídicas/métodos , Roedores , Distribuição Tecidual
4.
Anal Bioanal Chem ; 406(16): 3853-61, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24390463

RESUMO

Nanosized titanium dioxide (TiO2) is one of the most interesting and valuable nanomaterials for the construction industry but also in health care applications, food, and consumer goods, e.g., cosmetics. Therefore, the properties associated with this material are described in detail. Despite its widespread use, the analytical determination and characterization of nanosized metal oxides is not as straightforward as the comparatively easy-to-detect metallic nanoparticles (e.g., silver or gold). This study presents the method development and the results of the determination of tissue titanium (Ti) levels after treatment of rats with the nanosized TiO2. Total Ti levels were chosen to evaluate the presence and distribution of TiO2 nanoparticles. A procedure consisting of incubation with a mixture of nitric acid (HNO3) and hydrofluoric acid (HF), and heating was developed to digest tissues and TiO2 nanomaterials in order to determine the total Ti content by inductively coupled plasma mass spectrometry (ICPMS). For the inter-laboratory comparison, altogether four laboratories analyzed the same samples upon digestion using the available ICPMS equipment. A major premise for any toxicokinetic study is the possibility to detect the chemical under investigation in biological samples (tissues). So, the study has to be performed with a dose high enough to allow for subsequent tissue level measurement of the chemical under investigation. On the other hand, dose of the chemical applied should not induce over toxicity in the animal as this may affect its absorption, distribution, metabolism, and excretion. To determine a non-toxic TiO2 dosage, an acute toxicity study in rats was performed, and the organs obtained were evaluated for the presence of Ti by ICPMS. Despite the differences in methodology and independent of the sample preparation and the ICPMS equipment used, the results obtained for samples with Ti concentrations >4 µg Ti/g tissue agreed well.


Assuntos
Estruturas Animais/química , Espectrometria de Massas/métodos , Nanopartículas/análise , Titânio/análise , Animais , Laboratórios/normas , Masculino , Espectrometria de Massas/normas , Ratos , Ratos Wistar
5.
Part Fibre Toxicol ; 11: 30, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24993397

RESUMO

OBJECTIVE: The aim of this study was to obtain kinetic data that can be used in human risk assessment of titanium dioxide nanomaterials. METHODS: Tissue distribution and blood kinetics of various titanium dioxide nanoparticles (NM-100, NM-101, NM-102, NM-103, and NM-104), which differ with respect to primary particle size, crystalline form and hydrophobicity, were investigated in rats up to 90 days post-exposure after oral and intravenous administration of a single or five repeated doses. RESULTS: For the oral study, liver, spleen and mesenteric lymph nodes were selected as target tissues for titanium (Ti) analysis. Ti-levels in liver and spleen were above the detection limit only in some rats. Titanium could be detected at low levels in mesenteric lymph nodes. These results indicate that some minor absorption occurs in the gastrointestinal tract, but to a very limited extent.Both after single and repeated intravenous (IV) exposure, titanium rapidly distributed from the systemic circulation to all tissues evaluated (i.e. liver, spleen, kidney, lung, heart, brain, thymus, reproductive organs). Liver was identified as the main target tissue, followed by spleen and lung. Total recovery (expressed as % of nominal dose) for all four tested nanomaterials measured 24 h after single or repeated exposure ranged from 64-95% or 59-108% for male or female animals, respectively. During the 90 days post-exposure period, some decrease in Ti-levels was observed (mainly for NM-100 and NM-102) with a maximum relative decrease of 26%. This was also confirmed by the results of the kinetic analysis which revealed that for each of the investigated tissues the half-lifes were considerable (range 28-650 days, depending on the TiO(2)-particle and tissue investigated). Minor differences in kinetic profile were observed between the various particles, though these could not be clearly related to differences in primary particle size or hydrophobicity. Some indications were observed for an effect of crystalline form (anatase vs. rutile) on total Ti recovery. CONCLUSION: Overall, the results of the present oral and IV study indicates very low oral bioavailability and slow tissue elimination. Limited uptake in combination with slow elimination might result in the long run in potential tissue accumulation.


Assuntos
Nanopartículas Metálicas , Titânio/administração & dosagem , Titânio/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Cristalização , Feminino , Interações Hidrofóbicas e Hidrofílicas , Injeções Intravenosas , Fígado/metabolismo , Pulmão/metabolismo , Linfonodos/metabolismo , Masculino , Tamanho da Partícula , Ratos Wistar , Medição de Risco , Baço/metabolismo , Distribuição Tecidual , Titânio/toxicidade
6.
Part Fibre Toxicol ; 11: 49, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25227272

RESUMO

BACKGROUND: Although silver nanoparticles are currently used in more than 400 consumer products, it is not clear to what extent they induce adverse effects after inhalation during production and use. In this study, we determined the lung burden, tissue distribution, and the induction and recovery of adverse effects after short-term inhalation exposure to 15 nm and 410 nm silver nanoparticles. METHODS: Rats were nose-only exposed to clean air, 15 nm silver nanoparticles (179 µg/m³) or 410 nm silver particles (167 µg/m³) 6 hours per day, for four consecutive days. Tissue distribution and the induction of pulmonary toxicity were determined at 24 hours and 7 days after exposure and compared with the internal alveolar dose. Presence of silver nanoparticles in lung cells was visualized by transmission electron microscopy (TEM). RESULTS: Exposure to 15 nm silver nanoparticles induced moderate pulmonary toxicity compared to the controls, indicated by a 175-fold increased influx of neutrophils in the lungs, a doubling of cellular damage markers in the lungs, a 5-fold increase in pro-inflammatory cytokines, and a 1.5-fold increase in total glutathione at 24 hours after exposure. All the observed effects disappeared at 7 days after exposure. No effects were observed after exposure to 410 nm silver particles. The internal alveolar mass dose of the 15 nm nanoparticles was 3.5 times higher compared to the 410 nm particles, which equals to a 66,000 times higher particle number. TEM analysis revealed 15 nm nanoparticles in vesicles and nuclei of lung cells, which were decreased in size to <5 nm at 24 hours after exposure. This demonstrates substantial dissolution of the silver nanoparticles. CONCLUSION: The results show a clear size-dependent effect after inhalation of similar mass concentrations of 15 nm and 410 nm silver (nano)particles. This can be partially explained by the difference in the internal alveolar dose between the 15 nm and 410 nm silver (nano)particles as well as by a difference in the release rate of silver ions.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Pneumonia/induzido quimicamente , Mucosa Respiratória/efeitos dos fármacos , Prata/toxicidade , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Animais , Biomarcadores/metabolismo , Núcleo Celular/química , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/imunologia , Núcleo Celular/ultraestrutura , Citocinas/agonistas , Citocinas/metabolismo , Vesículas Citoplasmáticas/química , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/imunologia , Vesículas Citoplasmáticas/ultraestrutura , Glutationa/agonistas , Glutationa/metabolismo , Pulmão/química , Pulmão/imunologia , Pulmão/ultraestrutura , Masculino , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/análise , Nanopartículas Metálicas/química , Infiltração de Neutrófilos/efeitos dos fármacos , Tamanho da Partícula , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/patologia , Distribuição Aleatória , Ratos Endogâmicos F344 , Mucosa Respiratória/química , Mucosa Respiratória/imunologia , Mucosa Respiratória/ultraestrutura , Absorção pelo Trato Respiratório , Prata/administração & dosagem , Prata/análise , Prata/química , Organismos Livres de Patógenos Específicos , Distribuição Tecidual , Testes de Toxicidade Aguda , Toxicocinética
7.
Environ Res ; 115: 1-10, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22507957

RESUMO

BACKGROUND: Cerium oxide (CeO(2)) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles. METHODS: Atherosclerosis-prone apolipoprotein E knockout (ApoE(-/-)) mice were exposed by inhalation to diluted exhaust (1.7 mg/m(3), 20, 60 or 180 min, 5 day/week, for 4 weeks), from an engine using standard diesel fuel (DE) or the same diesel fuel containing 9 ppm cerium oxide nanoparticles (DCeE). Changes in hematological indices, clinical chemistry, atherosclerotic burden, tissue levels of inflammatory cytokines and pathology of the major organs were assessed. RESULTS: Addition of CeO(2) to fuel resulted in a reduction of the number (30%) and surface area (10%) of the particles in the exhaust, whereas the gaseous co-pollutants were increased (6-8%). There was, however, a trend towards an increased size and complexity of the atherosclerotic plaques following DE exposure, which was not evident in the DCeE group. There were no clear signs of altered hematological or pathological changes induced by either treatment. However, levels of proinflammatory cytokines were modulated in a brain region and liver following DCeE exposure. CONCLUSIONS: These results imply that addition of CeO(2) nanoparticles to fuel decreases the number of particles in exhaust and may reduce atherosclerotic burden associated with exposure to standard diesel fuel. From the extensive assessment of biological parameters performed, the only concerning effect of cerium addition was a slightly raised level of cytokines in a region of the central nervous system. Overall, the use of cerium as a fuel additive may be a potentially useful way to limit the health effects of vehicle exhaust. However, further testing is required to ensure that such an approach is not associated with a chronic inflammatory response which may eventually cause long-term health effects.


Assuntos
Aterosclerose/induzido quimicamente , Cério/toxicidade , Exposição por Inalação/efeitos adversos , Nanopartículas/toxicidade , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Animais , Aterosclerose/sangue , Aterosclerose/genética , Contagem de Células Sanguíneas , Análise Química do Sangue , Encéfalo/imunologia , Feminino , Hematócrito , Hemoglobinas/metabolismo , Imuno-Histoquímica , Pulmão/imunologia , Masculino , Camundongos , Camundongos Knockout , Tamanho da Partícula , Distribuição Aleatória
8.
Ann Work Expo Health ; 65(7): 748-759, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33909008

RESUMO

Driven by the concept of the 'four generations of nanomaterials', the current state of the knowledge on risk assessment of future generation is explored for active nanomaterials. Through case studies, we identify challenges and evaluate the preparedness of characterization methods, available risk assessment modeling tools, and analytical instrumentation for such future generation active nanomaterials with dynamic hybrid structures of biotic-abiotic and organic-inorganic combinations. Currently available risk assessment tools and analytical instrumentation were found to be lacking the risk preparedness and characterization readiness for active nanomaterials, respectively. Potential future developments in risk assessment modeling tools and analytical techniques can be based upon this work which shall ensure long-term safety of the next generation of nanomaterials.


Assuntos
Nanoestruturas , Exposição Ocupacional , Humanos , Nanoestruturas/efeitos adversos , Nanotecnologia , Medição de Risco
9.
Langmuir ; 26(7): 5050-5, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20205463

RESUMO

Recent reports [Smith and Korgel Langmuir 2008, 24, 644-649 and Smith et al. Langmuir 2009, 25, 9518-9524] have implicated certain hexadecyltrimethylammonium bromide (CTAB) products with iodide impurities, in the failure of a seed-mediated, silver and surfactant-assisted growth protocol, to produce gold nanorods. We used two of the three "suspect" CTAB products and a "good" CTAB product in the protocol, varying silver nitrate solutions in the growth solutions. We obtained excellent gold nanorod samples as witnessed in signature longitudinal plasmon peaks in optical extinction spectra, which we substantiated using electron microscopy. Analysis of these samples using inductively coupled plasma mass spectroscopy (ICP-MS) failed to detect iodide. We subsequently learnt from discussions with Smith et al. that different lot numbers within the same product had been analyzed by our respective laboratories. We can conclude that iodide impurities can vary significantly from lot to lot within a product, to such an extent that there is no guarantee that gold nanorods can be synthesized with one or other CTAB product. Conversely, labeling a CTAB product, identified by a product number or supplier name, as one whose use precludes the formation of nanorods, is also hasty.


Assuntos
Compostos de Cetrimônio/química , Ouro/química , Iodetos/química , Nanopartículas Metálicas/química , Nanotubos/química , Cetrimônio , Espectrometria de Massas , Nanotecnologia
10.
Int J Hyg Environ Health ; 212(1): 76-81, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18187363

RESUMO

From the year 2003 to 2005 around 1700 Dutch soldiers made a part of the international stabilisation force in Iraq. An incident happened as a group of four Dutch soldiers found a 30mm bullet identified as containing depleted uranium (DU). The main pathway of the acute exposure is via inhalation of small uranium containing particles, e.g. from a bullet during its explosion. To develop a method for acute exposure investigations were carried out about finding an efficient and suitable way to sample nasal mucus as medium of inhalation. Generally, in human exposure studies with regard to natural uranium (NU) or DU, urine is the matrix for analysis. Uranium concentrations in urine are based on daily ingestion depending on the composition of drinking water and food. A second possibility is the acute exposure to uranium after an incident, either through inhalation or impact. Nevertheless, the results deliver only interpretations in respect to chronic/long-term exposure. For the acute exposure procedures like sniffling out into cleansing tissues and rinsing the nose were tested with real-life samples from four soldiers involved in an incident with possibly acute exposure to uranium. For the quantification of uranium high-resolution inductively coupled plasma mass spectrometry (HR-ICPMS) was applied.


Assuntos
Exposição por Inalação/análise , Urânio/análise , Humanos , Iraque , Militares , Muco/química , Mucosa Nasal/química , Sistema Respiratório/química , Espectrofotometria Atômica/métodos , Urânio/urina , Urinálise , Guerra
11.
Sci Total Environ ; 663: 154-161, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30711581

RESUMO

Detection and quantification of trace elements in aqueous samples is crucial in terms of environmental monitoring and risk assessment for (heavy) metals in the environment. Silver (Ag) in its nanoparticulate form is commonly used as antimicrobial additive in consumer products and pharmaceuticals. Since released dissolved Ag species act as the actual antimicrobial agent, Ag nanomaterials are supposed to pose risks to the environment by a release of dissolved species. Unfortunately, no standard protocols exist yet to gain reliable information about the presence and distribution of nanomaterials in the environment. Therefore, we present an interlaboratory collaboration involving three laboratories to quantify silver, silver based nanoparticles (Ag-b-NPs) and a wide range of relevant trace elements after different sample pre-treatments for profiling surface water of a Dutch channel. Besides quantification of the elements, different sample pretreatments like acidification, with or without filtration, and their effect on the measurable elemental content were studied. Total Ag and Ag-b-NPs were quantified at lower ng L-1 range in the channel water whereas reasonable differences depending on the pre-treatment were identified; Ba, As, Pb, Co, Cr, Cu, Ni and Zn were detected at µg L-1 range and Na, K, Mg, Ca and Fe at mg L-1 range. Significant sample pre-treatment effects were observed for the elements Cr, Cu, Fe, Pb and Zn, which is very likely due to the existence of particulate species. Measured concentrations were well comparable among the three laboratories underpinning method validity and correctness allowing for a comprehensive, reliable risk assessment for nanomaterials in the environment.

12.
J Pharm Biomed Anal ; 170: 169-175, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-30927662

RESUMO

Tris(1,3-dichloropropyl) phosphate (TDCPP, CAS 13674-87-8) is one of the most commonly used organophosphate flame retardants (OPFRs) in cars, residential furniture and other products containing polyurethane foam to meet the required flammability standards. For the tasks of the working group Analyses in Biological Material from the German Research Foundation (DFG), a human biomonitoring process for TDCPP is developed. The metabolism of TDCPP is described in different in vivo studies and it is already shown that Bis (1,3-dichloropropyl) phosphate (BDCPP, CAS 72236-72-7) is the primary compound specific metabolite of TDCPP which is often detectable in urine samples. BDCPP is also the most appropriate metabolite because it is unique to TDCPP since no other OPFR known today is transformed or hydrolyzed to BDCPP. A combined method by liquid chromatography-tandem mass spectrometry (LC-MS/MS) is implemented by optimizing atmospheric pressure chemical ionization (APCI) and Electron Spray Ionization (ESI) operating in negative ionization mode. Simultaneous, multiple reaction monitoring is studied to achieve the best performance with respect to selectivity, detectability and robustness of BDCPP. During an expanded validation assessment, the methodological performance characteristics are determined in details and the method is applied in a specific human biomonitoring study among non-occupationally exposed humans of randomly chosen volunteers from the Netherlands.


Assuntos
Retardadores de Chama/metabolismo , Organofosfatos/metabolismo , Compostos Organofosforados/metabolismo , Compostos Organofosforados/urina , Cromatografia Líquida/métodos , Monitoramento Ambiental/métodos , Humanos , Fosfatos/metabolismo , Poliuretanos/metabolismo , Espectrometria de Massas em Tandem/métodos
13.
J Trace Elem Med Biol ; 53: 77-83, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30910211

RESUMO

As a safer alternative for the use of radioactive tracers, the enriched stable 58Fe isotope has been introduced in studies of iron metabolism. In this study this isotope is measured with instrumental neutron activation analysis (INAA) in blood samples of patients with iron related disorders and controls after oral ingestion of a 58Fe containing pharmaceutical. Results were compared with those derived from MC-ICP-MS, applied on the same samples, and analytical and practical aspects of the two techniques were compared. Both techniques showed an increased absorption and incorporation in red blood cells of the 58Fe isotope in iron deficient patients in contrast to the controls. In all individuals results of INAA measurements were in good agreement with those of MC-ICP-MS (|zeta| < 2). Uncertainties in INAA are substantially higher than those achievable by MC-ICP-MS but the INAA technique offers a high specificity and selectivity for iron close to 100%. In contrast to INAA, sample preparation before measurement is very critical in MC-ICP-MS and interferences with 58Ni and 54Cr may hamper the measurement of 58Fe and 54Fe respectively. Since it takes at least five days after irradiation to reduce the activity of interfering radionuclides (mainly 24Na), INAA is a more time consuming procedure; the need of a nuclear reactor facility makes it also less accessible than MC-ICP-MS. Costs are comparable. Both INAA and MC-ICP-MS are able to adequately measure changes in iron isotope composition in blood when an enriched stable iron isotope is applied in clinical research. Although MC-ICP-MS is more sensitive, is faster and has easier access, in INAA preparative steps before measurement are simpler and there are hardly demands on the kind and size of the samples. This may be relevant working with biomaterials in a clinical setting.


Assuntos
Isótopos de Ferro/sangue , Isótopos de Ferro/metabolismo , Hepatopatias/metabolismo , Administração Oral , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Isótopos de Ferro/administração & dosagem , Isótopos de Ferro/farmacocinética , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Análise de Ativação de Nêutrons
14.
Biomaterials ; 29(12): 1912-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18242692

RESUMO

A kinetic study was performed to determine the influence of particle size on the in vivo tissue distribution of spherical-shaped gold nanoparticles in the rat. Gold nanoparticles were chosen as model substances as they are used in several medical applications. In addition, the detection of the presence of gold is feasible with no background levels in the body in the normal situation. Rats were intravenously injected in the tail vein with gold nanoparticles with a diameter of 10, 50, 100 and 250 nm, respectively. After 24 h, the rats were sacrificed and blood and various organs were collected for gold determination. The presence of gold was measured quantitatively with inductively coupled plasma mass spectrometry (ICP-MS). For all gold nanoparticle sizes the majority of the gold was demonstrated to be present in liver and spleen. A clear difference was observed between the distribution of the 10 nm particles and the larger particles. The 10 nm particles were present in various organ systems including blood, liver, spleen, kidney, testis, thymus, heart, lung and brain, whereas the larger particles were only detected in blood, liver and spleen. The results demonstrate that tissue distribution of gold nanoparticles is size-dependent with the smallest 10nm nanoparticles showing the most widespread organ distribution.


Assuntos
Ouro/administração & dosagem , Ouro/farmacocinética , Nanopartículas/administração & dosagem , Especificidade de Órgãos , Animais , Injeções Intravenosas , Masculino , Tamanho da Partícula , Ratos , Ratos Wistar , Distribuição Tecidual
16.
ACS Nano ; 11(5): 4542-4552, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28443337

RESUMO

The development of engineered nanomaterials is growing exponentially, despite concerns over their potential similarities to environmental nanoparticles that are associated with significant cardiorespiratory morbidity and mortality. The mechanisms through which inhalation of nanoparticles could trigger acute cardiovascular events are emerging, but a fundamental unanswered question remains: Do inhaled nanoparticles translocate from the lung in man and directly contribute to the pathogenesis of cardiovascular disease? In complementary clinical and experimental studies, we used gold nanoparticles to evaluate particle translocation, permitting detection by high-resolution inductively coupled mass spectrometry and Raman microscopy. Healthy volunteers were exposed to nanoparticles by acute inhalation, followed by repeated sampling of blood and urine. Gold was detected in the blood and urine within 15 min to 24 h after exposure, and was still present 3 months after exposure. Levels were greater following inhalation of 5 nm (primary diameter) particles compared to 30 nm particles. Studies in mice demonstrated the accumulation in the blood and liver following pulmonary exposure to a broader size range of gold nanoparticles (2-200 nm primary diameter), with translocation markedly greater for particles <10 nm diameter. Gold nanoparticles preferentially accumulated in inflammation-rich vascular lesions of fat-fed apolipoproteinE-deficient mice. Furthermore, following inhalation, gold particles could be detected in surgical specimens of carotid artery disease from patients at risk of stroke. Translocation of inhaled nanoparticles into the systemic circulation and accumulation at sites of vascular inflammation provides a direct mechanism that can explain the link between environmental nanoparticles and cardiovascular disease and has major implications for risk management in the use of engineered nanomaterials.


Assuntos
Nanopartículas Metálicas/administração & dosagem , Doenças Vasculares/metabolismo , Administração por Inalação , Adulto , Animais , Ouro , Voluntários Saudáveis , Humanos , Pulmão/patologia , Masculino , Camundongos , Nanopartículas , Nanoestruturas/análise , Tamanho da Partícula , Doenças Vasculares/terapia
17.
Talanta ; 147: 289-95, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26592609

RESUMO

The identification and quantification of the bioaccumulation of noble metal engineered nanoparticles (ENPs) by aquatic organisms is of great relevance to understand the exposure and potential toxicity mechanisms of nanoscale materials. Four analytical scenarios were investigated in relation to various sized and composed noble metal (gold (Au), platinum (Pt) and silver (Ag)) ENPs during acute, short-term exposure of Daphnia (D.) magna. Next to the total elemental quantification of absorbed ENPs by D. magna, especially information on the size and particle distribution of ENPs in D. magna is of relevance. Dissolution of the exposed biological material prior to measurement by asymmetric flow field flow fractionation coupled to inductively coupled plasma mass spectrometry (AF4-ICPMS) is challenging because the ENPs must stay stable regarding to particle size and composition. Next to dissolution of exposed D. magna by tetra methyl ammonium hydroxide (TMAH), a new enzymatic dissolution approach was explored by using trypsin. The presence of various sized and composed ENPs has been confirmed by AF4-ICPMS but the chosen dissolution medium was crucial for the results. TMAH and trypsin led to comparable results for medium-sized (50nm) noble metals ENPs in exposed D. magna. But it was also shown that the dissolution of biological materials with smaller (<5nm) ENPs led to different results in particle size and elemental concentration depending on the selected dissolution medium. A significant uptake of Au and Pt ENPs by D. magna or adsorption to particles occurred because only 1-5% of the exposed ENPs remained in the exposure medium.


Assuntos
Daphnia/efeitos dos fármacos , Ecotoxicologia/métodos , Nanopartículas Metálicas/química , Metais Pesados/química , Metais Pesados/toxicidade , Tamanho da Partícula , Animais , Transporte Biológico , Bovinos , Daphnia/metabolismo , Metais Pesados/metabolismo , Tripsina/metabolismo
18.
J Nanopart Res ; 18: 182, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27433139

RESUMO

The increasing number of nanotechnology products on the market poses increasing human health risks by particle exposures. Adverse effects of silver nanoparticles (AgNPs) in various cell lines have been measured based on exposure dose after a fixed time point, but NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Even though knowledge about relevant timescales for NP uptake is essential, e.g. for time- and cost-effective risk assessment through modelling, insufficient data are available. Therefore, the authors examined uptake rates for three different AgNP sizes (20, 50 and 75 nm) and two tissue culture medium compositions (with and without foetal calf serum, FCS) under realistic exposure concentrations in pulmonary epithelial 16HBE14o-cells. The quantification of Ag in cells was carried out by high-resolution inductively coupled plasma mass spectrometry. We show for the first time that uptake kinetics of AgNPs into 16HBE14o-cells was highly influenced by medium composition. Uptake into cells was higher in medium without FCS, reaching approximately twice the concentration after 24 h than in medium supplemented with FCS, showing highest uptake for 50-nm AgNPs when expressed on a mass basis. This optimum shifts to 20 nm on a number basis, stressing the importance of the measurand in which results are presented. The importance of our research identifies that not just the uptake after a certain time point should be considered as dose but also the process of uptake (timing) might need to be considered when studying the mechanism of toxicity of nanoparticles.

19.
J Nanopart Res ; 18(9): 286, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27774037

RESUMO

Human health risks by silver nanoparticle (AgNP) exposure are likely to increase due to the increasing number of NP-containing products and demonstrated adverse effects in various cell lines. Unfortunately, results from (toxicity) studies are often based on exposure dose and are often measured only at a fixed time point. NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Macrophages are the first line of defense against invading foreign agents including NPs. How macrophages deal with the particles is essential for potential toxicity of the NPs. However, there is a considerable lack of uptake studies of particles in the nanometer range and macrophage-like cells. Therefore, uptake rates were determined over 24 h for three different AgNPs sizes (20, 50 and 75 nm) in medium with and without fetal calf serum. Non-toxic concentrations of 10 ng Ag/mL for monocytic THP-1 cells, representing realistic exposure concentration for short-term exposures, were chosen. The uptake of Ag was higher in medium without fetal calf serum and showed increasing uptake for decreasing NP sizes, both on NP mass and on number basis. Internal cellular concentrations reached roughly 32/10 %, 25/18 % and 21/15 % of the nominal concentration in the absence of fetal calf serum/with fetal calf serum for 20-, 50- and 75-nm NPs, respectively. Our research shows that uptake kinetics in macrophages differ for various NP sizes. To increase the understanding of the mechanism of NP toxicity in cells, the process of uptake (timing) should be considered.

20.
Nanotoxicology ; 10(1): 63-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25704116

RESUMO

A number of studies have shown that induction of pulmonary toxicity by nanoparticles of the same chemical composition depends on particle size, which is likely in part due to differences in lung deposition. Particle size mostly determines whether nanoparticles reach the alveoli, and where they might induce toxicity. For the risk assessment of nanomaterials, there is need for a suitable dose metric that accounts for differences in effects between different sized nanoparticles of the same chemical composition. The aim of the present study is to determine the most suitable dose metric to describe the effects of silver nanoparticles after short-term inhalation. Rats were exposed to different concentrations (ranging from 41 to 1105 µg silver/m(3) air) of 18, 34, 60 and 160 nm silver particles for four consecutive days and sacrificed at 24 h and 7 days after exposure. We observed a concentration-dependent increase in pulmonary toxicity parameters like cell counts and pro-inflammatory cytokines in the bronchoalveolar lavage fluid. All results were analysed using the measured exposure concentrations in air, the measured internal dose in the lung and the estimated alveolar dose. In addition, we analysed the results based on mass, particle number and particle surface area. Our study indicates that using the particle surface area as a dose metric in the alveoli, the dose-response effects of the different silver particle sizes overlap for most pulmonary toxicity parameters. We conclude that the alveolar dose expressed as particle surface area is the most suitable dose metric to describe the toxicity of silver nanoparticles after inhalation.


Assuntos
Nanopartículas Metálicas/toxicidade , Pneumonia/induzido quimicamente , Prata/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/análise , Relação Dose-Resposta a Droga , Exposição por Inalação , Pulmão/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Ratos , Ratos Endogâmicos F344 , Prata/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA