Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Plant Dis ; 105(6): 1719-1727, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33337235

RESUMO

The seed- and air-borne pathogen Colletotrichum lupini, the causal agent of lupin anthracnose, is the most important disease in white lupin (Lupinus albus) worldwide and can cause total yield loss. The aims of this study were to establish a reliable high-throughput phenotyping tool to identify anthracnose resistance in white lupin germplasm and to evaluate a genomic prediction model, accounting for previously reported resistance quantitative trait loci, on a set of independent lupin genotypes. Phenotyping under controlled conditions, performing stem inoculation on seedlings, showed to be applicable for high throughput, and its disease score strongly correlated with field plot disease assessments (r = 0.95, P < 0.0001) and yield (r = -0.64, P = 0.035). Traditional one-row field disease phenotyping showed no significant correlation with field plot disease assessments (r = 0.31, P = 0.34) and yield (r = -0.45, P = 0.17). Genomically predicted resistance values showed no correlation with values observed under controlled or field conditions, and the parental lines of the recombinant inbred line population used for constructing the prediction model exhibited a resistance pattern opposite to that displayed in the original (Australian) environment used for model construction. Differing environmental conditions, inoculation procedures, or population structure may account for this result. Phenotyping a diverse set of 40 white lupin accessions under controlled conditions revealed eight accessions with improved resistance to anthracnose. The standardized area under the disease progress curves (sAUDPC) ranged from 2.1 to 2.8, compared with the susceptible reference accession with a sAUDPC of 3.85. These accessions can be incorporated into white lupin breeding programs. In conclusion, our data support stem inoculation-based disease phenotyping under controlled conditions as a time-effective approach to identify field-relevant resistance, which can now be applied to further identify sources of resistance and their underlying genetics.


Assuntos
Colletotrichum , Lupinus , Austrália , Colletotrichum/genética , Lupinus/genética , Melhoramento Vegetal
2.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430123

RESUMO

Narrow-leafed lupin (Lupinus angustifolius L.) is a grain legume crop that is advantageous in animal nutrition due to its high protein content; however, livestock grazing on stubble may develop a lupinosis disease that is related to toxins produced by a pathogenic fungus, Diaporthe toxica. Two major unlinked alleles, Phr1 and PhtjR, confer L. angustifolius resistance to this fungus. Besides the introduction of these alleles into modern cultivars, the molecular mechanisms underlying resistance remained unsolved. In this study, resistant and susceptible lines were subjected to differential gene expression profiling in response to D. toxica inoculation, spanning the progress of the infection from the early to latent phases. High-throughput sequencing of stem transcriptome and PCR quantification of selected genes were performed. Gene Ontology term analysis revealed that an early (24 h) response in the resistant germplasm encompassed activation of genes controlling reactive oxygen species and oxylipin biosynthesis, whereas in the susceptible germplasm, it comprised induction of xyloglucan endotransglucosylases/hydrolases. During the first five days of the infection, the number of genes with significantly altered expressions was about 2.6 times higher in resistant lines than in the susceptible line. Global transcriptome reprogramming involving the activation of defense response genes occurred in lines conferring Phr1 and PhtjR resistance alleles about 4-8 days earlier than in the susceptible germplasm.


Assuntos
Resistência à Doença/genética , Lupinus/genética , Doenças das Plantas/genética , Transcriptoma/genética , Ascomicetos/patogenicidade , Perfilação da Expressão Gênica , Ligação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Lupinus/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Seleção Genética/genética
3.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917799

RESUMO

White lupin (Lupinus albus L.) is a pulse annual plant cultivated from the tropics to temperate regions for its high-protein grain as well as a cover crop or green manure. Wild populations are typically late flowering and have high vernalization requirements. Nevertheless, some early flowering and thermoneutral accessions were found in the Mediterranean basin. Recently, quantitative trait loci (QTLs) explaining flowering time variance were identified in bi-parental population mapping, however, phenotypic and genotypic diversity in the world collection has not been addressed yet. In this study, a diverse set of white lupin accessions (n = 160) was phenotyped for time to flowering in a controlled environment and genotyped with PCR-based markers (n = 50) tagging major QTLs and selected homologs of photoperiod and vernalization pathway genes. This survey highlighted quantitative control of flowering time in white lupin, providing statistically significant associations for all major QTLs and numerous regulatory genes, including white lupin homologs of CONSTANS, FLOWERING LOCUS T, FY, MOTHER OF FT AND TFL1, PHYTOCHROME INTERACTING FACTOR 4, SKI-INTERACTING PROTEIN 1, and VERNALIZATION INDEPENDENCE 3. This revealed the complexity of flowering control in white lupin, dispersed among numerous loci localized on several chromosomes, provided economic justification for future genome-wide association studies or genomic selection rather than relying on simple marker-assisted selection.


Assuntos
Flores/fisiologia , Lupinus/fisiologia , Desenvolvimento Vegetal , Locos de Características Quantitativas , Característica Quantitativa Herdável , Fatores de Tempo
4.
Plant Cell Environ ; 43(11): 2680-2698, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32885839

RESUMO

The narrow-leafed lupin, Lupinus angustifolius L., is a grain legume crop, cultivated both as a green manure and as a source of protein for animal feed and human food production. During its domestication process, numerous agronomic traits were improved, however, only two trait-related genes were identified hitherto, both by linkage mapping. Genome-wide association studies (GWAS), exploiting genomic sequencing, did not select any novel candidate gene. In the present study, an innovative method of 3'-end reduced representation transcriptomic profiling, a massive analysis of cDNA ends, has been used for genotyping of 126 L. angustifolius lines surveyed by field phenotyping. Significant genotype × environment interactions were identified for all phenology and yield traits analysed. Principal component analysis of population structure evidenced European domestication bottlenecks, visualized by clustering of breeding materials and cultivars. GWAS provided contribution towards deciphering vernalization pathway in legumes, and, apart from highlighting known domestication loci (Ku/Julius and mol), designated novel candidate genes for L. angustifolius traits. Early phenology was associated with genes from vernalization, cold-responsiveness and phosphatidylinositol signalling pathways whereas high yield with genes controlling photosynthesis performance and abiotic stress (drought or heat) tolerance. PCR-based toolbox was developed and validated to enable tracking desired alleles in marker-assisted selection. Narrow-leafed lupin was genotyped with an innovative method of transcriptome profiling and phenotyped for phenology, growth and yield traits in field. Early phenology was found associated with genes from cold-response, vernalization and phosphatidylinositol signalling pathways, whereas high yield with genes running photosystem II and drought or heat stress response. Key loci were supplied with PCR-based toolbox for marker-assisted selection.


Assuntos
Perfilação da Expressão Gênica/métodos , Genes de Plantas/genética , Lupinus/genética , Domesticação , Genes de Plantas/fisiologia , Estudos de Associação Genética , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Lupinus/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Análise de Sequência de DNA
5.
Int J Mol Sci ; 21(7)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276381

RESUMO

Narrow-leafed lupin (Lupinus angustifolius L.) has recently been supplied with advanced genomic resources and, as such, has become a well-known model for molecular evolutionary studies within the legume family-a group of plants able to fix nitrogen from the atmosphere. The phylogenetic position of lupins in Papilionoideae and their evolutionary distance to other higher plants facilitates the use of this model species to improve our knowledge on genes involved in nitrogen assimilation and primary metabolism, providing novel contributions to our understanding of the evolutionary history of legumes. In this study, we present a complex characterization of two narrow-leafed lupin gene families-glutamine synthetase (GS) and phosphoenolpyruvate carboxylase (PEPC). We combine a comparative analysis of gene structures and a synteny-based approach with phylogenetic reconstruction and reconciliation of the gene family and species history in order to examine events underlying the extant diversity of both families. Employing the available evidence, we show the impact of duplications on the initial complement of the analyzed gene families within the genistoid clade and posit that the function of duplicates has been largely retained. In terms of a broader perspective, our results concerning GS and PEPC gene families corroborate earlier findings pointing to key whole genome duplication/triplication event(s) affecting the genistoid lineage.


Assuntos
Genoma de Planta , Glutamato-Amônia Ligase/genética , Lupinus/genética , Fosfoenolpiruvato Carboxilase/genética , Duplicações Segmentares Genômicas , Evolução Molecular , Lupinus/metabolismo , Nitrogênio/metabolismo , Análise de Sequência de DNA , Sintenia
6.
Int J Mol Sci ; 20(22)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726789

RESUMO

The last century has witnessed rapid domestication of the narrow-leafed lupin (Lupinus angustifolius L.) as a grain legume crop, exploiting discovered alleles conferring low-alkaloid content (iucundus), vernalization independence (Ku and Julius), and reduced pod shattering (lentus and tardus). In this study, a L. angustifolius mapping population was subjected to massive analysis of cDNA ends (MACE). The MACE yielded 4185 single nucleotide polymorphism (SNP) markers for linkage map improvement and 30,595 transcriptomic profiles for expression quantitative trait loci (eQTL) mapping. The eQTL highlighted a high number of cis- and trans-regulated alkaloid biosynthesis genes with gene expression orchestrated by a regulatory agent localized at iucundus locus, supporting the concept that ETHYLENE RESPONSIVE TRANSCRIPTION FACTOR RAP2-7 may control low-alkaloid phenotype. The analysis of Ku shed light on the vernalization response via FLOWERING LOCUS T and FD regulon in L. angustifolius, providing transcriptomic evidence for the contribution of several genes acting in C-repeat binding factor (CBF) cold responsiveness and in UDP-glycosyltransferases pathways. Research on lentus selected a DUF1218 domain protein as a candidate gene controlling the orientation of the sclerified endocarp and a homolog of DETOXIFICATION14 for purplish hue of young pods. An ABCG transporter was identified as a hypothetical contributor to sclerenchyma fortification underlying tardus phenotype.


Assuntos
Mapeamento Cromossômico , Domesticação , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas , Lupinus , Folhas de Planta , Proteínas de Plantas , Locos de Características Quantitativas , Lupinus/genética , Lupinus/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética
7.
New Phytol ; 213(1): 220-232, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27418400

RESUMO

Adaptation of Lupinus angustifolius (narrow-leafed lupin) to cropping in southern Australian and northern Europe was transformed by a dominant mutation (Ku) that removed vernalization requirement for flowering. The Ku mutation is now widely used in lupin breeding to confer early flowering and maturity. We report here the identity of the Ku mutation. We used a range of genetic, genomic and gene expression approaches to determine whether Flowering Locus T (FT) homologues are associated with the Ku locus. One of four FT homologues present in the narrow-leafed lupin genome, LanFTc1, perfectly co-segregated with the Ku locus in a reference mapping population. Expression of LanFTc1 in the ku (late-flowering) parent was strongly induced by vernalization, in contrast to the Ku (early-flowering) parent, which showed constitutively high LanFTc1 expression. Co-segregation of this expression phenotype with the LanFTc1 genotype indicated that the Ku mutation impairs cis-regulation of LanFTc1. Sequencing of LanFTc1 revealed a 1.4-kb deletion in the promoter region, which was perfectly predictive of vernalization response in 216 wild and domesticated accessions. Linkage disequilibrium rapidly decayed around LanFTc1, suggesting that this deletion caused the loss of vernalization response. This is the first time a legume FTc subclade gene has been implicated in the vernalization response.


Assuntos
Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Lupinus/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Arabidopsis/genética , Sequência de Bases , Sítios de Ligação , Genes de Plantas , Marcadores Genéticos , Mutação INDEL/genética , Desequilíbrio de Ligação/genética , Lupinus/genética , Motivos de Nucleotídeos/genética , Filogenia , Proteínas de Plantas/metabolismo , Polimorfismo Genético , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
8.
Chromosome Res ; 24(3): 355-78, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27168155

RESUMO

Narrow-leafed lupin (Lupinus angustifolius L.) has recently been considered a reference genome for the Lupinus genus. In the present work, genetic and cytogenetic maps of L. angustifolius were supplemented with 30 new molecular markers representing lupin genome regions, harboring genes involved in nitrogen fixation during the symbiotic interaction of legumes and soil bacteria (Rhizobiaceae). Our studies resulted in the precise localization of bacterial artificial chromosomes (BACs) carrying sequence variants for early nodulin 40, nodulin 26, nodulin 45, aspartate aminotransferase P2, asparagine synthetase, cytosolic glutamine synthetase, and phosphoenolpyruvate carboxylase. Together with previously mapped chromosomes, the integrated L. angustifolius map encompasses 73 chromosome markers, including 5S ribosomal DNA (rDNA) and 45S rDNA, and anchors 20 L. angustifolius linkage groups to corresponding chromosomes. Chromosomal identification using BAC fluorescence in situ hybridization identified two BAC clones as narrow-leafed lupin centromere-specific markers, which served as templates for preliminary studies of centromere composition within the genus. Bioinformatic analysis of these two BACs revealed that centromeric/pericentromeric regions of narrow-leafed lupin chromosomes consisted of simple sequence repeats ordered into tandem repeats containing the trinucleotide and pentanucleotide simple sequence repeats AGG and GATAC, structured into long arrays. Moreover, cross-genus microsynteny analysis revealed syntenic patterns of 31 single-locus BAC clones among several legume species. The gene and chromosome level findings provide evidence of ancient duplication events that must have occurred very early in the divergence of papilionoid lineages. This work provides a strong foundation for future comparative mapping among legumes and may facilitate understanding of mechanisms involved in shaping legume chromosomes.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos Artificiais Bacterianos/genética , Genoma de Planta/genética , Lupinus/genética , Sintenia/genética , Aspartato Aminotransferases/genética , Aspartato-Amônia Ligase/genética , Centrômero/genética , DNA Ribossômico/genética , Ligação Genética , Marcadores Genéticos/genética , Glutamato-Amônia Ligase/genética , Hibridização in Situ Fluorescente , Cariótipo , Proteínas de Membrana/genética , Fixação de Nitrogênio/genética , Fosfoenolpiruvato Carboxilase/genética , Proteínas de Plantas/genética , RNA Ribossômico/genética , RNA Ribossômico 5S/genética , Rhizobiaceae/genética , Sequências de Repetição em Tandem/genética
9.
BMC Genomics ; 17(1): 820, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27769166

RESUMO

BACKGROUND: The Arabidopsis FLOWERING LOCUS T (FT) gene, a member of the phosphatidylethanolamine binding protein (PEBP) family, is a major controller of flowering in response to photoperiod, vernalization and light quality. In legumes, FT evolved into three, functionally diversified clades, FTa, FTb and FTc. A milestone achievement in narrow-leafed lupin (Lupinus angustifolius L.) domestication was the loss of vernalization responsiveness at the Ku locus. Recently, one of two existing L. angustifolius homologs of FTc, LanFTc1, was revealed to be the gene underlying Ku. It is the first recorded involvement of an FTc homologue in vernalization. The evolutionary basis of this phenomenon in lupin has not yet been deciphered. RESULTS: Bacterial artificial chromosome (BAC) clones carrying LanFTc1 and LanFTc2 genes were localized in different mitotic chromosomes and constituted sequence-specific landmarks for linkage groups NLL-10 and NLL-17. BAC-derived superscaffolds containing LanFTc genes revealed clear microsyntenic patterns to genome sequences of nine legume species. Superscaffold-1 carrying LanFTc1 aligned to regions encoding one or more FT-like genes whereas superscaffold-2 mapped to a region lacking such a homolog. Comparative mapping of the L. angustifolius genome assembly anchored to linkage map localized superscaffold-1 in the middle of a 15 cM conserved, collinear region. In contrast, superscaffold-2 was found at the edge of a 20 cM syntenic block containing highly disrupted collinearity at the LanFTc2 locus. 118 PEBP-family full-length homologs were identified in 10 legume genomes. Bayesian phylogenetic inference provided novel evidence supporting the hypothesis that whole-genome and tandem duplications contributed to expansion of PEBP-family genes in legumes. Duplicated genes were subjected to strong purifying selection. Promoter analysis of FT genes revealed no statistically significant sequence similarity between duplicated copies; only RE-alpha and CCAAT-box motifs were found at conserved positions and orientations. CONCLUSIONS: Numerous lineage-specific duplications occurred during the evolution of legume PEBP-family genes. Whole-genome duplications resulted in the origin of subclades FTa, FTb and FTc and in the multiplication of FTa and FTb copy number. LanFTc1 is located in the region conserved among all main lineages of Papilionoideae. LanFTc1 is a direct descendant of ancestral FTc, whereas LanFTc2 appeared by subsequent duplication.


Assuntos
Lupinus/genética , Família Multigênica , Proteína de Ligação a Fosfatidiletanolamina/genética , Mapeamento Cromossômico , Evolução Molecular , Perfilação da Expressão Gênica , Ligação Genética , Genoma de Planta , Genômica , Lupinus/classificação , Filogenia , Regiões Promotoras Genéticas , Sintenia
10.
Plant Mol Biol Report ; 33: 84-101, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25620837

RESUMO

The narrow-leafed lupin (Lupinus angustifolius) was recently considered as a legume reference species. Genetic resources have been developed, including a draft genome sequence, linkage maps, nuclear DNA libraries, and cytogenetic chromosome-specific landmarks. Here, we used a complex approach, involving DNA fingerprinting, sequencing, genetic mapping, and molecular cytogenetics, to localize and analyze L. angustifolius gene-rich regions (GRRs). A L. angustifolius genomic bacterial artificial chromosome (BAC) library was screened with short sequence repeat (SSR)-based probes. Selected BACs were fingerprinted and assembled into contigs. BAC-end sequence (BES) annotation allowed us to choose clones for sequencing, targeting GRRs. Additionally, BESs were aligned to the scaffolds of the genome sequence. The genetic map was supplemented with 35 BES-derived markers, distributed in 14 linkage groups and tagging 37 scaffolds. The identified GRRs had an average gene density of 19.6 genes/100 kb and physical-to-genetic distance ratios of 11 to 109 kb/cM. Physical and genetic mapping was supported by multi-BAC-fluorescence in situ hybridization (FISH), and five new linkage groups were assigned to the chromosomes. Syntenic links to the genome sequences of five legume species (Medicago truncatula, Glycine max, Lotus japonicus, Phaseolus vulgaris, and Cajanus cajan) were identified. The comparative mapping of the two largest lupin GRRs provides novel evidence for ancient duplications in all of the studied species. These regions are conserved among representatives of the main clades of Papilionoideae. Furthermore, despite the complex evolution of legumes, some segments of the nuclear genome were not substantially modified and retained their quasi-ancestral structures. Cytogenetic markers anchored in these regions constitute a platform for heterologous mapping of legume genomes.

11.
J Appl Genet ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954397

RESUMO

Europe is highly dependent on soybean meal imports and anticipates an increase of domestic plant protein production. Ongoing climate change resulted in northward shift of plant hardiness zones, enabling spring-sowing of freezing-sensitive crops, including soybean. However, it requires efficient reselection of germplasm adapted to relatively short growing season and long-day photoperiod. In the present study, a PCR array has been implemented, targeting early maturity (E1-E4, E7, E9, and E10), pod shattering (qPHD1), and growth determination (Dt1) genes. This array was optimized for routine screening of soybean diversity panel (204 accessions), subjected to the 2018-2020 survey of phenology, morphology, and yield-related traits in a potential cultivation region in Poland. High broad-sense heritability (0.84-0.88) was observed for plant height, thousand grain weight, maturity date, and the first pod height. Significant positive correlations were identified between the number of seeds and pods per plant, between these two traits and seed yield per plant as well as between flowering, maturity, plant height, and first pod height. PCR array genotyping revealed high genetic diversity, yielding 98 allelic combinations. The most remarkable correlations were identified between flowering and E7 or E1, between maturity and E4 or E7 and between plant height and Dt1 or E4. The study demonstrated high applicability of this PCR array for molecular selection of soybean towards adaptation to Central Europe, designating recessive qPHD1 and dominant Dt1, E3, and E4 alleles as major targets to align soybean growth season requirements with the length of the frost-free period, improve plant performance, and increase yield.

12.
BMC Genomics ; 14: 79, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23379841

RESUMO

BACKGROUND: The narrow-leafed lupin, Lupinus angustifolius L., is a grain legume species with a relatively compact genome. The species has 2n = 40 chromosomes and its genome size is 960 Mbp/1C. During the last decade, L. angustifolius genomic studies have achieved several milestones, such as molecular-marker development, linkage maps, and bacterial artificial chromosome (BAC) libraries. Here, these resources were integratively used to identify and sequence two gene-rich regions (GRRs) of the genome. RESULTS: The genome was screened with a probe representing the sequence of a microsatellite fragment length polymorphism (MFLP) marker linked to Phomopsis stem blight resistance. BAC clones selected by hybridization were subjected to restriction fingerprinting and contig assembly, and 232 BAC-ends were sequenced and annotated. BAC fluorescence in situ hybridization (BAC-FISH) identified eight single-locus clones. Based on physical mapping, cytogenetic localization, and BAC-end annotation, five clones were chosen for sequencing. Within the sequences of clones that hybridized in FISH to a single-locus, two large GRRs were identified. The GRRs showed strong and conserved synteny to Glycine max duplicated genome regions, illustrated by both identical gene order and parallel orientation. In contrast, in the clones with dispersed FISH signals, more than one-third of sequences were transposable elements. Sequenced, single-locus clones were used to develop 12 genetic markers, increasing the number of L. angustifolius chromosomes linked to appropriate linkage groups by five pairs. CONCLUSIONS: In general, probes originating from MFLP sequences can assist genome screening and gene discovery. However, such probes are not useful for positional cloning, because they tend to hybridize to numerous loci. GRRs identified in L. angustifolius contained a low number of interspersed repeats and had a high level of synteny to the genome of the model legume G. max. Our results showed that not only was the gene nucleotide sequence conserved between soybean and lupin GRRs, but the order and orientation of particular genes in syntenic blocks was homologous, as well. These findings will be valuable to the forthcoming sequencing of the lupin genome.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Genoma de Planta , Lupinus/genética , Mapeamento Cromossômico , Mapeamento de Sequências Contíguas , Citogenética , Elementos de DNA Transponíveis/genética , Biblioteca Gênica , Ligação Genética , Marcadores Genéticos/genética , Hibridização in Situ Fluorescente , Hibridização de Ácido Nucleico , Análise de Sequência de DNA
13.
Genes (Basel) ; 14(7)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37510281

RESUMO

The main efforts in common wheat (Triticum aestivum L.) breeding focus on yield, grain quality, and resistance to biotic and abiotic stresses. One of the major threats affecting global wheat cultivation and causing significant crop production losses are rust diseases, including leaf rust caused by a biotrophic fungus Puccinia triticina Eriks. Genetically determined resistance to leaf rust has been characterized in young plants (seedling resistance) as well as in plants at the adult plant stage. At the seedling stage, resistance is controlled vertically by major R genes, conferring a race-specific response that is highly effective but usually short-lived due to the rapid evolution of potentially virulent fungi. In mature plants, horizontal adult plant resistance (APR) was described, which provides long-term protection against multiple races of pathogens. A better understanding of molecular mechanisms underlying the function of APR genes would enable the development of new strategies for resistance breeding in wheat. Therefore, in the present study we focused on early transcriptomic responses of two major wheat APR genes, Lr34 and Lr67, and three complementary miRNAs, tae-miR9653b, tae-miR9773 and tae-miR9677b, to inoculation with P. triticina. Plant material consisted of five wheat reference varieties, Artigas, NP846, Glenlea, Lerma Rojo and TX89D6435, containing the Lr34/Yr18 and Lr67/Yr46 resistance genes. Biotic stress was induced by inoculation with fungal spores under controlled conditions in a phytotron. Plant material consisted of leaf tissue sampled before inoculation as well as 6, 12, 24 and 48 h postinoculation (hpi). The APR gene expression was quantified using real-time PCR with two reference genes, whereas miRNA was quantified using droplet digital PCR. This paper describes the resistance response of APR genes to inoculation with races of leaf rust-causing fungi that occur in central Europe. The study revealed high variability of expression profiles between varieties and time-points, with the prevalence of downregulation for APR genes and upregulation for miRNAs during the development of an early defense response. Nevertheless, despite the downregulation initially observed, the expression of Lr34 and Lr67 genes in studied cultivars was significantly higher than in a control line carrying wild (susceptible) alleles.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Melhoramento Vegetal , Fungos , Plântula/genética
14.
Eur J Drug Metab Pharmacokinet ; 48(1): 101-114, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36477706

RESUMO

BACKGROUND AND OBJECTIVES: Probability of target attainment (PTA) curves are commonly used to support dose recommendations of antibiotics for different patient groups. In this study we propose PTA analysis to optimize sugammadex dosing in children. METHODS: This study involved data from an observational cohort study of 30 American Society of Anesthesiologists (ASA) Physical Status I and II children undergoing surgery requiring muscle relaxation. All patients received 0.6 mg/kg rocuronium, with sugammadex administered at the end of surgery in three different doses (0.5, 1.0, and 2.0 mg/kg) to reverse the neuromuscular blockade. RESULTS: The data were analyzed using a population Bayesian-based approach. The developed model was used to simulate pharmacokinetic-pharmacodynamic profiles for different patient groups and dosing regimens before the PTA analysis was performed to translate these simulations into a clinically useful measure. The target was defined as neuromuscular blockade reversal measured by Train-of-Four (TOF ratio > 90%) at 1.5, 3, and 5 min post sugammadex dose. The sugammadex doses leading to 90% PTA were determined for different patients' body weights, rocuronium doses, and time gaps between rocuronium and sugammadex administration assuming the model, priors, and gathered data. For comparison, PTA curves for a range of clinical scenarios are provided to illustrate the usefulness of PTA analysis in selecting the appropriate dose for a given patient. CONCLUSIONS: The proposed PTA analysis is useful to support the sugammadex dose selection in different clinical scenarios. TRIAL REGISTRATION: The study was registered by ClinicalTrials.gov under number NCT04851574 on 21 April 2021.


Assuntos
Fármacos Neuromusculares não Despolarizantes , gama-Ciclodextrinas , Humanos , Criança , Sugammadex , Rocurônio , gama-Ciclodextrinas/farmacologia , Teorema de Bayes , Fármacos Neuromusculares não Despolarizantes/farmacologia , Androstanóis/farmacologia , Probabilidade
15.
Nutrients ; 15(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375550

RESUMO

The bioavailability levels of cannabidiol (CBD) and tetrahydrocannabinol (THC) determine their pharmacological effects. Therefore, for medical purposes, it is essential to obtain extracts containing the lowest possible content of the psychogenic component THC. In our extract, the CBD/THC ratio was 16:1, which is a high level compared to available medical preparations, where it is, on average, 1:1. This study assessed the bioavailability and stability of CBD and THC derived from Cannabis sativa L. with reduced THC content. The extract was orally administered (30 mg/kg) in two solvents, Rapae oleum and Cremophor, to forty-eight Wistar rats. The whole-blood and brain concentrations of CBD and THC were measured using liquid chromatography coupled with mass spectrometry detection. Much higher concentrations of CBD than THC were observed for both solvents in the whole-blood and brain after oral administration of the Cannabis sativa extract with a decreased THC content. The total bioavailability of both CBD and THC was higher for Rapae oleum compared to Cremophor. Some of the CBD was converted into THC in the body, which should be considered when using Cannabis sativa for medical purposes. The THC-reduced hemp extract in this study is a promising candidate for medical applications.


Assuntos
Canabidiol , Canabinoides , Cannabis , Animais , Ratos , Cannabis/química , Solventes , Disponibilidade Biológica , Ratos Wistar , Extratos Vegetais/química , Óleos de Plantas
16.
Sci Rep ; 12(1): 8164, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581248

RESUMO

Narrow-leafed lupin (NLL, Lupinus angustifolius L.) is a legume plant cultivated for grain production and soil improvement. Worldwide expansion of NLL as a crop attracted various pathogenic fungi, including Colletotrichum lupini causing a devastating disease, anthracnose. Two alleles conferring improved resistance, Lanr1 and AnMan, were exploited in NLL breeding, however, underlying molecular mechanisms remained unknown. In this study, European NLL germplasm was screened with Lanr1 and AnMan markers. Inoculation tests in controlled environment confirmed effectiveness of both resistance donors. Representative resistant and susceptible lines were subjected to differential gene expression profiling. Resistance to anthracnose was associated with overrepresentation of "GO:0006952 defense response", "GO:0055114 oxidation-reduction process" and "GO:0015979 photosynthesis" gene ontology terms. Moreover, the Lanr1 (83A:476) line revealed massive transcriptomic reprogramming quickly after inoculation, whereas other lines showed such a response delayed by about 42 h. Defense response was associated with upregulation of TIR-NBS, CC-NBS-LRR and NBS-LRR genes, pathogenesis-related 10 proteins, lipid transfer proteins, glucan endo-1,3-beta-glucosidases, glycine-rich cell wall proteins and genes from reactive oxygen species pathway. Early response of 83A:476, including orchestrated downregulation of photosynthesis-related genes, coincided with the successful defense during fungus biotrophic growth phase, indicating effector-triggered immunity. Mandelup response was delayed and resembled general horizontal resistance.


Assuntos
Lupinus , Lupinus/genética , Oxirredução , Fotossíntese/genética , Melhoramento Vegetal , Folhas de Planta/genética
17.
Hortic Res ; 9: uhac180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338848

RESUMO

Ongoing climate change has considerably reduced the seasonal window for crop vernalization, concurrently expanding cultivation area into northern latitudes with long-day photoperiod. To address these changes, cool season legume breeders need to understand molecular control of vernalization and photoperiod. A key floral transition gene integrating signals from these pathways is the Flowering locus T (FT). Here, a recently domesticated grain legume, yellow lupin (Lupinus luteus L.), was explored for potential involvement of FT homologues in abolition of vernalization and photoperiod requirements. Two FTa (LlutFTa1a and LlutFTa1b) and FTc (LlutFTc1 and LlutFTc2) homologues were identified and sequenced for two contrasting parents of a reference recombinant inbred line (RIL) population, an early-flowering cultivar Wodjil and a late-flowering wild-type P28213. Large deletions were detected in the 5' promoter regions of three FT homologues. Quantitative trait loci were identified for flowering time and vernalization response in the RIL population and in a diverse panel of wild and domesticated accessions. A 2227 bp deletion found in the LlutFTc1 promoter was linked with early phenology and vernalization independence, whereas LlutFTa1a and LlutFTc2 indels with photoperiod responsiveness. Comparative mapping highlighted convergence of FTc1 indel evolution in two Old World lupin species, addressing both artificial selection during domestication and natural adaptation to short season environmental conditions. We concluded that rapid flowering in yellow lupin is associated with the de-repression of the LlutFTc1 homologue from the juvenile phase, putatively due to the elimination of all binding sites in the promoter region for the AGAMOUS-like 15 transcription factor.

18.
J Hered ; 102(2): 228-36, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20947695

RESUMO

The legume genus, Lupinus, has many notable properties that make it interesting from a scientific perspective, including its basal position in the evolution of Papilionoid legumes. As the most economically important legume species, L. angustifolius L. (narrow-leafed lupin) has been subjected to much genetic analysis including linkage mapping and genomic library development. Cytogenetic analysis has been hindered by the large number of small morphologically uniform chromosomes (2n = 40). Here, we present a significant advance: the development of chromosome-specific cytogenetic markers and assignment of the first genetic linkage groups (LGs) to chromosomal maps of L. angustifolius using the bacterial artificial chromosome (BAC)-fluorescence in situ hybridization approach. Twelve clones produced single-locus signals that "landed" on 7 different chromosomes. Based on BAC-end sequences of those clones, genetic markers were generated. Eight clones localized on 3 chromosomes, allowed these chromosomes to be assigned to 3 LGs. An additional single-locus clone may be useful to combine an unassigned group (Cluster-2) with main LGs. This work provides a strong foundation for future identification of all chromosomes with specific markers and for complete integration of narrow-leafed lupin LGs. This resource will greatly facilitate the chromosome assignment and ordering of sequence contigs in sequencing the L. angustifolius genome.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Ligação Genética , Lupinus/genética , Cromossomos Artificiais Bacterianos , Marcadores Genéticos , Biblioteca Genômica , Hibridização in Situ Fluorescente , Dados de Sequência Molecular
19.
J Appl Genet ; 61(4): 531-545, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32968972

RESUMO

White lupin (Lupinus albus L.) is a high-protein grain legume crop, grown since ancient Greece and Rome. Despite long domestication history, its cultivation remains limited, partly because of susceptibility to anthracnose. Only some late-flowering, bitter, low-yielding landraces from Ethiopian mountains displayed resistance to this devastating disease. The resistance is controlled by various genes, thereby complicating the breeding efforts. The objective of this study was developing tools for molecular tracking of Ethiopian resistance genes based on genotyping-by-sequencing (GBS) data, envisaging linkage mapping and genomic selection approaches. Twenty GBS markers from two major quantitative trait loci (QTLs), antr04_1/antr05_1 and antr04_2/antr05_2, were converted to PCR-based markers using assigned transcriptome sequences. Newly developed markers improved mapping resolution around both anthracnose resistance loci, providing more precise QTL estimation. PCR-based screening of diversified domesticated and primitive germplasm revealed the high specificity of two markers for the antr04_1/antr05_1 locus (TP222136 and TP47110) and one for the antr04_2/antr05_2 locus (TP338761), highlighted by simple matching coefficients of 0.96 and 0.89, respectively. Moreover, a genomic selection approach based on GBS data of a recombinant inbred line mapping population was assessed, providing an average predictive ability of 0.56. These tools can be used for preselection of candidate white lupin germplasm for anthracnose resistance assays.


Assuntos
Resistência à Doença/genética , Ligação Genética/genética , Lupinus/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico/métodos , Marcadores Genéticos/genética , Genoma de Planta/genética , Lupinus/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
20.
Genes (Basel) ; 11(12)2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33322080

RESUMO

Old World lupins constitute an interesting model for evolutionary research due to diversity in genome size and chromosome number, indicating evolutionary genome reorganization. It has been hypothesized that the polyploidization event which occurred in the common ancestor of the Fabaceae family was followed by a lineage-specific whole genome triplication (WGT) in the lupin clade, driving chromosome rearrangements. In this study, chromosome-specific markers were used as probes for heterologous fluorescence in situ hybridization (FISH) to identify and characterize structural chromosome changes among the smooth-seeded (Lupinus angustifolius L., Lupinus cryptanthus Shuttlew., Lupinus micranthus Guss.) and rough-seeded (Lupinus cosentinii Guss. and Lupinus pilosus Murr.) lupin species. Comparative cytogenetic mapping was done using FISH with oligonucleotide probes and previously published chromosome-specific bacterial artificial chromosome (BAC) clones. Oligonucleotide probes were designed to cover both arms of chromosome Lang06 of the L. angustifolius reference genome separately. The chromosome was chosen for the in-depth study due to observed structural variability among wild lupin species revealed by BAC-FISH and supplemented by in silico mapping of recently released lupin genome assemblies. The results highlighted changes in synteny within the Lang06 region between the lupin species, including putative translocations, inversions, and/or non-allelic homologous recombination, which would have accompanied the evolution and speciation.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genoma de Planta , Lupinus/genética , Cromossomos Artificiais Bacterianos , Hibridização in Situ Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA