Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(29): 17429-17437, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32636270

RESUMO

Biogenesis of plant microRNAs (miRNAs) takes place in nuclear dicing bodies (D-bodies), where the ribonulease III-type enzyme Dicer-like 1 (DCL1) processes primary transcripts of miRNAs (pri-miRNAs) into miRNA/miRNA* (*, passenger strand) duplexes from either base-to-loop or loop-to-base directions. Hyponastic Leaves 1 (HYL1), a double-stranded RNA-binding protein, is crucial for efficient and accurate processing. However, whether HYL1 has additional function remains unknown. Here, we report that HYL1 plays a noncanonical role in protecting pri-miRNAs from nuclear exosome attack in addition to ensuring processing. Loss of functions in SOP1 or HEN2, two cofactors of the nucleoplasmic exosome, significantly suppressed the morphological phenotypes of hyl1-2 Remarkably, mature miRNAs generated from loop-to-base processing were partially but preferentially restored in the hyl1 sop1 and hyl1 hen2 double mutants. Accordingly, loop-to-base-processed pri-miRNAs accumulated to higher levels in double mutants. In addition, dysfunction of HEN2, but not of SOP1, in hyl1-2 resulted in overaccumulation of many base-to-loop-processed pri-miRNAs, with most of their respective miRNAs unaffected. In summary, our findings reveal an antagonistic action of exosome in pri-miRNA biogenesis and uncover dual roles of HYL1 in stabilizing and processing of pri-miRNAs.


Assuntos
Núcleo Celular/metabolismo , Exossomos/metabolismo , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Plantas Geneticamente Modificadas , Proteínas de Ligação a RNA/genética , Ribonuclease III
2.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372930

RESUMO

Maize, one of the world's major food crops, is facing the challenge of rising temperature. Leaf senescence is the most significant phenotypic change of maize under heat stress at the seedling stage, but the underlying molecular mechanism is still unknown. Here, we screened for three inbred lines (PH4CV, B73, and SH19B) that showed differentially senescing phenotypes under heat stress. Among them, PH4CV showed no obviously senescing phenotype under heat stress, while SH19B demonstrated a severely senescing phenotype, with B73 being between the two extremes. Subsequently, transcriptome sequencing showed that differentially expressed genes (DEGs) were generally enriched in response to heat stress, reactive oxygen species (ROS), and photosynthesis in the three inbred lines under heat treatment. Notably, ATP synthesis and oxidative phosphorylation pathway genes were only significantly enriched in SH19B. Then, the expression differences of oxidative phosphorylation pathways, antioxidant enzymes, and senescence-related genes in response to heat stress were analyzed in the three inbred lines. In addition, we demonstrated that silencing ZmbHLH51 by virus-induced gene silencing (VIGS) inhibits the heat-stress-induced senescence of maize leaves. This study helps to further elucidate the molecular mechanisms of heat-stress-induced leaf senescence at the seedling stage of maize.


Assuntos
Transcriptoma , Zea mays , Zea mays/metabolismo , Perfilação da Expressão Gênica , Resposta ao Choque Térmico/genética , Genes de Plantas , Regulação da Expressão Gênica de Plantas
3.
New Phytol ; 236(3): 929-942, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35842794

RESUMO

The INDETERMINATE DOMAIN (IDD) transcription factors mediate various aspects of plant growth and development. We previously reported that an Arabidopsis IDD subfamily regulates spatial auxin accumulation, and thus organ morphogenesis and gravitropic responses. However, its functions in stress responses are not well defined. Here, we use a combination of physiological, biochemical, molecular, and genetic approaches to provide evidence that the IDD14 cooperates with basic leucine zipper-type binding factors/ABA-responsive element (ABRE)-binding proteins (ABRE-binding factors (ABFs)/AREBs) in ABA-mediated drought tolerance. idd14-1D, a gain-of-function mutant of IDD14, exhibits decreased leaf water loss and improved drought tolerance, whereas inactivation of IDD14 in idd14-1 results in increased transpiration and reduced drought tolerance. Altered IDD14 expression affects ABA sensitivity and ABA-mediated stomatal closure. IDD14 can physically interact with ABF1-4 and subsequently promote their transcriptional activities. Moreover, ectopic expression and mutation of ABFs could, respectively, suppress and enhance plant sensitivity to drought stress in the idd14-1 mutant. Our results demonstrate that IDD14 forms a functional complex with ABFs and positively regulates drought-stress responses, thus revealing a previously unidentified role of IDD14 in ABA signaling and drought responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Água/metabolismo
4.
PLoS Genet ; 15(4): e1008068, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30969965

RESUMO

The roles of histone demethylation in the regulation of plant flowering, disease resistance, rhythmical response, and seed germination have been elucidated recently; however, how histone demethylation affects leaf senescence remains largely unclear. In this study, we exploited yeast one-hybrid (Y1H) to screen for the upstream regulators of NONYELLOWING1 (NYE1), and identified RELATIVE OF EARLY FLOWERING6 (REF6), a histone H3 lysine 27 tri-methylation (H3K27me3) demethylase, as a putative binding protein of NYE1 promoter. By in vivo and in vitro analyses, we demonstrated that REF6 directly binds to the motif CTCGYTY in NYE1/2 promoters through its zinc finger domain and positively regulates their expression. Loss-of-function of REF6 delayed chlorophyll (Chl) degradation, whereas overexpression of REF6 accelerated Chl degradation. Subsequently, we revealed that REF6 positively regulates the general senescence process by directly up-regulating ETHYLENE INSENSITIVE 2 (EIN2), ORESARA1 (ORE1), NAC-LIKE, ACTIVATED BY AP3/PI (NAP), PYRUVATE ORTHOPHOSPHATE DIKINASE (PPDK), PHYTOALEXIN DEFICIENT 4 (PAD4), LIPOXYGENASE 1 (LOX1), NAC DOMAIN CONTAINING PROTEIN 3 (AtNAC3), and NAC TRANSCRIPTION FACTOR-LIKE 9 (NTL9), the key regulatory and functional genes predominantly involved in the regulation of developmental leaf senescence. Importantly, loss-of-function of REF6 increased H3K27me3 levels at all the target Senescence associated genes (SAGs). We therefore conclusively demonstrate that H3K27me3 methylation represents an epigenetic mechanism prohibiting the premature transcriptional activation of key developmentally up-regulated senescence regulatory as well as functional genes in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Sítios de Ligação/genética , Clorofila/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genes Reguladores , Modelos Genéticos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas
5.
J Integr Plant Biol ; 63(5): 924-936, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33270345

RESUMO

Endogenous salicylic acid (SA) regulates leaf senescence, but the underlying mechanism remains largely unexplored. The exogenous application of SA to living plants is not efficient for inducing leaf senescence. By taking advantage of probenazole (PBZ)-induced biosynthesis of endogenous SA, we previously established a chemical inducible leaf senescence system that depends on SA biosynthesis and its core signaling receptor NPR1 in Arabidopsis thaliana. Here, using this system, we identified WRKY46 and WRKY6 as key components of the transcriptional machinery downstream of NPR1 signaling. Upon PBZ treatment, the wrky46 mutant exhibited significantly delayed leaf senescence. We demonstrate that NPR1 is essential for PBZ/SA-induced WRKY46 activation, whereas WRKY46 in turn enhances NPR1 expression. WRKY46 interacts with NPR1 in the nucleus, binding to the W-box of the WRKY6 promoter to induce its expression in response to SA signaling. Dysfunction of WRKY6 abolished PBZ-induced leaf senescence, while overexpression of WRKY6 was sufficient to accelerate leaf senescence even under normal growth conditions, suggesting that WRKY6 may serve as an integration node of multiple leaf senescence signaling pathways. Taken together, these findings reveal that the NPR1-WRKY46-WRKY6 signaling cascade plays a critical role in PBZ/SA-mediated leaf senescence in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ácido Salicílico/metabolismo , Tiazóis/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética
6.
Plant Mol Biol ; 104(1-2): 217, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661661

RESUMO

Due to an unfortunate turn of events, the second co-corresponding author, Dr. Benke Kuai, was omitted from the original publication. The corrected authors' list and author contribution statement are published here and should be treated as definitive.

7.
Plant Cell Environ ; 43(9): 2287-2300, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32430911

RESUMO

Leaf senescence is an integral part of plant development, during which, nutrients are remobilized from senescent leaves to fast-growing organs. The initiation and progression dynamics of leaf senescence is therefore vital not only to the maximal accumulation of assimilates but also to the efficient remobilization of nutrients. Senescence is a finely tuned process that involves the action of a large number of transcription factors (TFs). The NAC TFs play critical roles in regulating leaf senescence in Arabidopsis, wheat, rice and tomato. Here, we identified a NAC TF, ZmNAC126 that is responsive to leaf senescence in maize. Ectopic overexpression of ZmNAC126 in Arabidopsis and maize enhanced chlorophyll degradation and promoted leaf senescence. Electrophoretic mobility shift and chromatin immunoprecipitation assays revealed that ZmNAC126 could directly bind to the promoters of major chlorophyll catabolic genes in maize. Dual-luciferase assay in maize protoplasts indicated that ZmNAC126 positively regulates these chlorophyll catabolic genes in maize. Moreover, ZmNAC126 could be induced by ethylene, and ZmEIN3, a major TF of ethylene signalling, could bind to its promoter to transactivate its expression. Taken together, ZmNAC126 may play a pivotal role in regulating natural and ethylene-triggered leaf senescence in maize.


Assuntos
Etilenos/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Zea mays/fisiologia , Arabidopsis/genética , Clorofila/genética , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética
8.
Plant Mol Biol ; 101(3): 257-268, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31302867

RESUMO

KEY MESSAGE: The C-terminal cysteine-rich motif of NYE1/SGR1 affects chlorophyll degradation likely by mediating its self-interaction and conformational change, and somehow altering its Mg-dechelating activity in response to the changing redox potential. During green organ senescence in plants, the most prominent phenomenon is the degreening caused by net chlorophyll (Chl) loss. NON-YELLOWING1/STAY-GREEN1 (NYE1/SGR1) was recently reported to be able to dechelates magnesium (Mg) from Chl a to initiate its degradation, but little is known about the domain/motif basis of its functionality. In this study, we carried out a protein truncation assay and identified a conserved cysteine-rich motif (CRM, P-X3-C-X3-C-X-C2-F-P-X5-P) at its C terminus, which is essential for its function. Genetic analysis showed that all four cysteines in the CRM were irreplaceable, and enzymatic assays demonstrated that the mutation of each of the four cysteines affected its Mg-dechelating activity. The CRM plays a critical role in the conformational change and self-interaction of NYE1 via the formation of inter- and intra-molecular disulfide bonds. Our results may provide insight into how NYE1 responds to rapid redox changes during leaf senescence and in response to various environmental stresses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Clorofila/química , Proteínas de Cloroplastos/metabolismo , Motivos de Aminoácidos , Quelantes/química , DNA Complementar/metabolismo , Dissulfetos , Regulação da Expressão Gênica de Plantas , Magnésio/química , Oxirredução , Fenótipo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Conformação Proteica , Domínios Proteicos , Estresse Fisiológico
9.
BMC Plant Biol ; 19(1): 534, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31795938

RESUMO

BACKGROUND: Flowering is a key process in the life cycle of plants. The transition from vegetative to reproductive growth is thus under sophisticated regulation by endogenous and environmental signals. The plant-specific Teosinte Branched 1/Cycloidea/Proliferating Cell Factors (TCP) family transcription factors are involved in many biological processes, but their roles in regulating flowering have not been totally elucidated. RESULTS: We explored the role of Arabidopsis TCP8 in plant development and, especially, in flowering control. Overexpression of TCP8 significantly delayed flowering under both long-day and short-day conditions and dominant repression by TCP8 led to various growth defects. The upregulation of TCP8 led to more accumulated mRNA level of FLOWERING LOCUS C (FLC), a central floral repressor of Arabidopsis. TCP8 functions in an FLC-dependent manner, as TCP8 overexpression in the flc-6 loss-of-function mutant failed to delay flowering. The vernalization treatment could reverse the late flowering phenotype caused by TCP8 overexpression. CONCLUSIONS: Our results provide evidence for a role of TCP8 in flowering control and add to our knowledge of the molecular basis of TCP8 function.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/genética , Proteínas de Domínio MADS/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
10.
J Integr Plant Biol ; 61(4): 383-387, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30267471

RESUMO

The H3K27 methyltransferase CLF inhibits lateral root (LR) formation through depositing the repressive H3K27me3 mark to the chromatin of PIN1, a key polar auxin transporter gene. Here, we show that the H3K27me3 demethylase REF6 promotes lateral root primordium initiation and LR emergence. REF6 directly binds to the chromatin of PIN1/3/7. Dysfunction in REF6 results in increased levels of H3K27me3 on PIN1/3/7 and suppressed expression of PIN genes. Genetic analysis of the clf ref6 double mutant revealed an antagonistic action between CLF and REF6, in terms of LR formation. Our findings indicate that H3K27 methylation and demethylation activities are likely coordinated to ensure proper LR organogenesis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Metilação , Ligação Proteica
11.
Plant J ; 92(4): 650-661, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28873256

RESUMO

In the seed industry, chlorophyll (Chl) fluorescence is often used as a major non-invasive reporter of seed maturation and quality. Breakdown of Chl is a proactive process during the late stage of seed maturation, as well as during leaf senescence and fruit ripening. However, the biological significance of this process is still unclear. NYE1 and NYE2 are Mg-dechelatases, catalyzing the first rate-limiting step of Chl a degradation. Loss-of-function of both NYE1 and NYE2 not only results in a nearly complete retention of Chl during leaf senescence, but also produces green seeds in Arabidopsis. In this study, we showed that Chl retention in the nye1 nye2 double-mutant caused severe photo-damage to maturing seeds. Upon prolonged light exposure, green seeds of nye1 nye2 gradually bleached out and eventually lost their germination capacity. This organ-specific photosensitive phenotype is likely due to an over-accumulation of free Chl, which possesses photosensitizing properties and causes a burst of reactive oxygen species upon light exposure. As expected, a similar, albeit much milder, photosensitive phenotype was observed in the seeds of d1 d2, a green-seed mutant defective in NYE/SGR orthologous genes in soybean. Taken together, our data suggest that efficient NYEs-mediated Chl degradation is critical for detoxification during seed maturation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Cloroplastos/metabolismo , Enzimas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Clorofila/análise , Clorofila/metabolismo , Proteínas de Cloroplastos/genética , Enzimas/genética , Germinação/efeitos da radiação , Peróxido de Hidrogênio/metabolismo , Luz , Especificidade de Órgãos , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Plântula/enzimologia , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação , Sementes/enzimologia , Sementes/genética , Sementes/fisiologia , Sementes/efeitos da radiação , Glycine max/enzimologia , Glycine max/genética , Glycine max/fisiologia , Glycine max/efeitos da radiação
12.
Plant Physiol ; 173(3): 1881-1891, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28096189

RESUMO

Although the biochemical pathway of chlorophyll (Chl) degradation has been largely elucidated, how Chl is rapidly yet coordinately degraded during leaf senescence remains elusive. Pheophytinase (PPH) is the enzyme for catalyzing the removal of the phytol group from pheophytin a, and PPH expression is significantly induced during leaf senescence. To elucidate the transcriptional regulation of PPH, we used a yeast (Saccharomyces cerevisiae) one-hybrid system to screen for its trans-regulators. SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), a key flowering pathway integrator, was initially identified as one of the putative trans-regulators of PPH After dark treatment, leaves of an SOC1 knockdown mutant (soc1-6) showed an accelerated yellowing phenotype, whereas those of SOC1-overexpressing lines exhibited a partial stay-green phenotype. SOC1 and PPH expression showed a negative correlation during leaf senescence. Substantially, SOC1 protein could bind specifically to the CArG box of the PPH promoter in vitro and in vivo, and overexpression of SOC1 significantly inhibited the transcriptional activity of the PPH promoter in Arabidopsis (Arabidopsis thaliana) protoplasts. Importantly, soc1-6 pph-1 (a PPH knockout mutant) double mutant displayed a stay-green phenotype similar to that of pph-1 during dark treatment. These results demonstrated that SOC1 inhibits Chl degradation via negatively regulating PPH expression. In addition, measurement of the Chl content and the maximum photochemical efficiency of photosystem II of soc1-6 and SOC1-OE leaves after dark treatment suggested that SOC1 also negatively regulates the general senescence process. Seven SENESCENCE-ASSOCIATED GENES (SAGs) were thereafter identified as its potential target genes, and NONYELLOWING1 and SAG113 were experimentally confirmed. Together, we reveal that SOC1 represses dark-induced leaf Chl degradation and senescence in general in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Hidrolases/genética , Proteínas de Domínio MADS/genética , Folhas de Planta/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Escuridão , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Hidrolases/metabolismo , Proteínas de Domínio MADS/metabolismo , Mutação , Fenótipo , Feofitinas/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
J Exp Bot ; 69(4): 751-767, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-28992212

RESUMO

Chlorophyll breakdown is one of the most obvious signs of leaf senescence and fruit ripening. The resulting yellowing of leaves can be observed every autumn, and the color change of fruits indicates their ripening state. During these processes, chlorophyll is broken down in a multistep pathway, now termed the 'PAO/phyllobilin' pathway, acknowledging the core enzymatic breakdown step catalysed by pheophorbide a oxygenase, which determines the basic linear tetrapyrrole structure of the products of breakdown that are now called 'phyllobilins'. This review provides an update on the PAO/phyllobilin pathway, and focuses on recent biochemical and molecular progress in understanding phyllobilin-modifying reactions as the basis for phyllobilin diversity, on the evolutionary diversity of the pathway, and on the transcriptional regulation of the pathway genes.


Assuntos
Clorofila/metabolismo , Oxigenases/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Tetrapirróis/metabolismo
14.
PLoS Genet ; 11(7): e1005399, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26218222

RESUMO

Degreening, caused by chlorophyll degradation, is the most obvious symptom of senescing leaves. Chlorophyll degradation can be triggered by endogenous and environmental cues, and ethylene is one of the major inducers. ETHYLENE INSENSITIVE3 (EIN3) is a key transcription factor in the ethylene signaling pathway. It was previously reported that EIN3, miR164, and a NAC (NAM, ATAF, and CUC) transcription factor ORE1/NAC2 constitute a regulatory network mediating leaf senescence. However, how this network regulates chlorophyll degradation at molecular level is not yet elucidated. Here we report a feed-forward regulation of chlorophyll degradation that involves EIN3, ORE1, and chlorophyll catabolic genes (CCGs). Gene expression analysis showed that the induction of three major CCGs, NYE1, NYC1 and PAO, by ethylene was largely repressed in ein3 eil1 double mutant. Dual-luciferase assay revealed that EIN3 significantly enhanced the promoter activity of NYE1, NYC1 and PAO in Arabidopsis protoplasts. Furthermore, Electrophoretic mobility shift assay (EMSA) indicated that EIN3 could directly bind to NYE1, NYC1 and PAO promoters. These results reveal that EIN3 functions as a positive regulator of CCG expression during ethylene-mediated chlorophyll degradation. Interestingly, ORE1, a senescence regulator which is a downstream target of EIN3, could also activate the expression of NYE1, NYC1 and PAO by directly binding to their promoters in EMSA and chromatin immunoprecipitation (ChIP) assays. In addition, EIN3 and ORE1 promoted NYE1 and NYC1 transcriptions in an additive manner. These results suggest that ORE1 is also involved in the direct regulation of CCG transcription. Moreover, ORE1 activated the expression of ACS2, a major ethylene biosynthesis gene, and subsequently promoted ethylene production. Collectively, our work reveals that EIN3, ORE1 and CCGs constitute a coherent feed-forward loop involving in the robust regulation of ethylene-mediated chlorophyll degradation during leaf senescence in Arabidopsis.


Assuntos
Envelhecimento/genética , Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Etilenos/metabolismo , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Proteínas Repressoras/genética , Transdução de Sinais/genética
15.
Plant J ; 84(3): 597-610, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26407000

RESUMO

Degreening caused by rapid chlorophyll (Chl) degradation is a characteristic event during green organ senescence or maturation. Pheophorbide a oxygenase gene (PAO) encodes a key enzyme of Chl degradation, yet its transcriptional regulation remains largely unknown. Using yeast one-hybrid screening, coupled with in vitro and in vivo assays, we revealed that Arabidopsis MYC2/3/4 basic helix-loop-helix proteins directly bind to PAO promoter. Overexpression of the MYCs significantly enhanced the transcriptional activity of PAO promoter in Arabidopsis protoplasts, and methyl jasmonate (MeJA) treatment greatly induced PAO expression in wild-type Arabidopsis plants, but the induction was abolished in myc2 myc3 myc4. In addition, MYC2/3/4 proteins could promote the expression of another Chl catabolic enzyme gene, NYC1, as well as a key regulatory gene of Chl degradation, NYE1/SGR1, by directly binding to their promoters. More importantly, the myc2 myc3 myc4 triple mutant showed a severe stay-green phenotype, whereas the lines overexpressing the MYCs showed accelerated leaf yellowing upon MeJA treatment. These results suggest that MYC2/3/4 proteins may mediate jasmonic acid (JA)-induced Chl degradation by directly activating these Chl catabolic genes (CCGs). Three NAC family proteins, ANAC019/055/072, downstream from MYC2/3/4 proteins, could also directly promote the expression of a similar set of CCGs (NYE1/SGR1, NYE2/SGR2 and NYC1) during Chl degradation. In particular, anac019 anac055 anac072 triple mutant displayed a severe stay-green phenotype after MeJA treatment. Finally, we revealed that MYC2 and ANAC019 may interact with each other and synergistically enhance NYE1 expression. Together, our study reveals a hierarchical and coordinated regulatory network of JA-induced Chl degradation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Clorofila/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Oxigenases/genética , Oxigenases/metabolismo , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Plant J ; 82(1): 151-62, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25702611

RESUMO

Salicylic acid (SA) plays an important role in various aspects of plant development and responses to stresses. To elucidate the sophisticated regulatory mechanism of SA synthesis and signaling, we used a yeast one-hybrid system to screen for regulators of isochorismate synthase 1 (ICS1), a gene encoding the key enzyme in SA biosynthesis in Arabidopsis thaliana. A TCP family transcription factor AtTCP8 was initially identified as a candidate regulator of ICS1. The regulation of ICS1 by TCP proteins is supported by the presence of a typical TCP binding site in the ICS1 promoter. The binding of TCP8 to this site was confirmed by in vitro and in vivo assays. Expression patterns of TCP8 and its corresponding gene TCP9 largely overlapped with ICS1 under pathogen attack. A significant reduction in the expression of ICS1 during immune responses was observed in the tcp8 tcp9 double mutant. We also detected strong interactions between TCP8 and SAR deficient 1 (SARD1), WRKY family transcription factor 28 (WRKY28), NAC (NAM/ATAF1,ATAF2/CUC2) family transcription factor 019 (NAC019), as well as among TCP8, TCP9 and TCP20, suggesting a complex coordinated regulatory mechanism underlying ICS1 expression. Our results collectively demonstrate that TCP proteins are involved in the orchestrated regulation of ICS1 expression, with TCP8 and TCP9 being verified as major representatives.


Assuntos
Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Transferases Intramoleculares/genética , Ácido Salicílico/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Ácido Corísmico/metabolismo , Regulação Enzimológica da Expressão Gênica , Genes Reporter , Transferases Intramoleculares/metabolismo , Imunidade Vegetal , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ácido Salicílico/análise , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
17.
Plant Cell Physiol ; 57(12): 2611-2619, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27986916

RESUMO

The major developmental significance of leaf senescence is the massive recycling of nutrients from senescing leaves to nascent organs, including seeds, to meet the requirement of their rapid development, so-called nutrient remobilization. The efficiency of nutrient remobilization is associated with the activity of diverse transporters. A large number of transporters are up-regulated during leaf senescence in Arabidopsis, many of which participate in regulating leaf senescence via different signaling pathways. Here, we report that a member of the cation/Ca2+ exchanger family, CCX1, is highly induced during leaf senescence in Arabidopsis. Although single mutation of CCX1 did not change the senescence phenotype, double mutation of CCX1 and CCX4 resulted in a subtle but significant stay-green phenotype during natural and dark-induced leaf senescence, suggesting that some members of the cation/Ca2+ exchanger family act redundantly in mediating leaf senescence. Consistently, overexpression of CCX1 accelerated leaf senescence. Moreover, the ccx1ccx4 double mutant was more tolerant to H2O2, whereas CCX1-overexpressing lines showed an elevated response to H2O2 treatment, presumably due to an overaccumulation of reactive oxygen species (ROS), indicating that CCX1 may promote leaf senescence via modulating ROS homeostasis. Notably, both ccx1-1 and ccx1ccx4 were sensitive to Ca2+ deprivation, implying that CCX1 may also be involved in modulating Ca2+ signaling and consequently affecting the initiation of leaf senescence.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cálcio/metabolismo , Cátions/metabolismo , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio/metabolismo , Antiporters , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Canais de Cálcio , Senescência Celular , Escuridão , Expressão Gênica , Homeostase , Peróxido de Hidrogênio/metabolismo , Bombas de Íon/genética , Bombas de Íon/metabolismo , Mutação , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/metabolismo , Transdução de Sinais
18.
Plant Cell Rep ; 35(8): 1729-41, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27154758

RESUMO

KEY MESSAGE: ANAC072 positively regulates both age- and dark-induced leaf senescence through activating the transcription of NYE1. Leaf senescence is integral to plant development, which is age-dependent and strictly regulated by internal and environmental signals. Although a number of senescence-related mutants and senescence-associated genes (SAGs) have been identified and characterized in the past decades, the general regulatory network of leaf senescence is still far from being elucidated. Here, we report the role of ANAC072, an SAG identified through bioinformatics analysis, in the regulation of chlorophyll degradation during natural and dark-induced leaf senescence. The expression of ANAC072 was increased with advancing leaf senescence in Arabidopsis. Leaf degreening was significantly delayed under normal or dark-induced conditions in anac072-1, a knockout mutant of ANAC072, with a higher chlorophyll level detected. In contrast, an overexpression mutant, anac072-2, with ANAC072 transcription markedly upregulated, showed an early leaf-yellowing phenotype. Consistently, senescent leaves of the loss-of-function mutant anac072-1 exhibited delays in the decrease of photosynthesis efficiency of photosystem II (F v/F m ratio) and the increase of plasma membrane ion leakage rate as compared with corresponding leaves of wild-type Col-0 plants, whereas the overexpression mutant anac072-2 showed opposite changes. Our data suggest that ANAC072 plays a positive role during natural and dark-induced leaf senescence. In addition, the transcript level of NYE1, a key regulatory gene in chlorophyll degradation, relied on the function of ANAC072. Combining these analyses with electrophoretic mobility shift assay and chromatin immunoprecipitation, we demonstrated that ANAC072 directly bound to the NYE1 promoter in vitro and in vivo, so ANAC072 may promote chlorophyll degradation by directly upregulating the expression of NYE1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Clorofila/metabolismo , Escuridão , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fatores de Tempo , Fatores de Transcrição/genética , Regulação para Cima/genética
19.
Molecules ; 19(6): 7207-22, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24886944

RESUMO

Danshen, the dried roots of Salvia miltiorrhiza, is an extremely valued Traditional Chinese Medicine. Previously, we have demonstrated that salvianolic acid B (SaB), the important bioactive ingredient in this herb, was a post-harvest product. Here, we further reported that all salvianolic acids (SAs) in the roots were post-harvest products of the drying process. In addition, the results of various radical scavenging activity assays, including lipid peroxidation (1), DPPH (2), hydroxyl (3) and superoxide (4), were significantly increased along with the accumulation of total salvianolic acids in the process. The contents of chemical targets and antioxidant activities both reached the highest value under thermal treatment at 130 °C for 80 min. In this dehydration period, contents of SaB, and sum of nine SAs increased from 0.01% to 5.51%, and 0.20% to 6.61%; and IC50 of antioxidant activity decreased from 4.85 to 2.69 (1); 7.75 to 0.43 (2); 2.57 to 1.13 (3) and 17.25 to 1.10 mg/mL. These results further supported the hypothesis that the newly harvested plant roots were still physiologically active and the secondary metabolites might be produced due to dehydration stress after harvest. Our findings supplied an important and useful theoretical basis for promoting the quality of Danshen and other medicinal plant materials.


Assuntos
Alcenos/metabolismo , Antioxidantes/metabolismo , Raízes de Plantas/química , Polifenóis/metabolismo , Salvia miltiorrhiza/química , Salvia miltiorrhiza/metabolismo , Sequestradores de Radicais Livres/metabolismo
20.
Sci Total Environ ; 916: 170226, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280599

RESUMO

Cultivation of Stropharia rugosoannulata with straw in forestland is effective for straw biodegradation and can prevent the waste of straw resources and environmental pollution and generate economic benefits. However, there is a lack of systematic evaluation of spent mushroom substrate (SMS) input into forestland, such as soil properties and microbial succession. In this experiment, 0 (CK), 10 (SA), 20 (SB), 30 (SC), 40 (SD), and 50 (SE) kg/m2 straw were used to cultivate S. rugosoannulata, and two soil layers (0-10 cm, 10-20 cm) of the cultivated forestland were analyzed. The results indicated that SMS significantly promoted nutrient accumulation in forestland. The bacterial alpha diversity in the SC treatment group was greater than that in the control and gradually decreased to the control level with interannual changes, while the trend of fungal alpha diversity was opposite to that of bacterial alpha diversity. Furthermore, the SC treatment group positively affected soil nitrogen metabolism-related microorganisms for two consecutive years and significantly promoted tree growth. Habitat niche breadth and null model analysis revealed that bacterial communities were more sensitive than fungal communities after SMS input. Linear mixed model (LMM) analysis revealed that SMS supplementation significantly positively affected bacteria (Gammaproteobacteria and Bacteroidota) and significantly negatively affected fungi (Coniochaetales). The constructed fungal-bacterial co-occurrence networks exhibited modularity, and the five types of bacteria were significantly correlated with soil organic matter (SOM), soil organic carbon (SOC), available potassium (AK), available phosphorus (AAP) and available nitrogen (AN) levels. The structural equation model (SEM) showed that bacterial diversity responded more to changes in soil nutrients than did fungal diversity. Overall, 30 kg/m2 of straw decomposition and 2 years of continuous cultivation were beneficial to soil health. This study provides new insights into the rational decomposition of straw and maintenance of forestland ecological balance by S. rugosoannulata.


Assuntos
Agaricales , Microbiota , Solo/química , Carbono/análise , Florestas , Nitrogênio/análise , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA