Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nature ; 622(7983): 619-626, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37758950

RESUMO

Postnatal maturation of cardiomyocytes is characterized by a metabolic switch from glycolysis to fatty acid oxidation, chromatin reconfiguration and exit from the cell cycle, instating a barrier for adult heart regeneration1,2. Here, to explore whether metabolic reprogramming can overcome this barrier and enable heart regeneration, we abrogate fatty acid oxidation in cardiomyocytes by inactivation of Cpt1b. We find that disablement of fatty acid oxidation in cardiomyocytes improves resistance to hypoxia and stimulates cardiomyocyte proliferation, allowing heart regeneration after ischaemia-reperfusion injury. Metabolic studies reveal profound changes in energy metabolism and accumulation of α-ketoglutarate in Cpt1b-mutant cardiomyocytes, leading to activation of the α-ketoglutarate-dependent lysine demethylase KDM5 (ref. 3). Activated KDM5 demethylates broad H3K4me3 domains in genes that drive cardiomyocyte maturation, lowering their transcription levels and shifting cardiomyocytes into a less mature state, thereby promoting proliferation. We conclude that metabolic maturation shapes the epigenetic landscape of cardiomyocytes, creating a roadblock for further cell divisions. Reversal of this process allows repair of damaged hearts.


Assuntos
Reprogramação Celular , Ácidos Graxos , Coração , Regeneração , Animais , Camundongos , Carnitina O-Palmitoiltransferase/deficiência , Carnitina O-Palmitoiltransferase/genética , Hipóxia Celular , Proliferação de Células , Metabolismo Energético , Ativação Enzimática , Epigênese Genética , Ácidos Graxos/metabolismo , Coração/fisiologia , Histona Desmetilases/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mutação , Miocárdio , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Oxirredução , Regeneração/fisiologia , Traumatismo por Reperfusão , Transcrição Gênica
2.
EMBO J ; 42(18): e111620, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37545364

RESUMO

Long noncoding RNAs (lncRNAs) influence the transcription of gene networks in many cell types, but their role in tumor-associated macrophages (TAMs) is still largely unknown. We found that the lncRNA ADPGK-AS1 was substantially upregulated in artificially induced M2-like human macrophages, macrophages exposed to lung cancer cells in vitro, and TAMs from human lung cancer tissue. ADPGK-AS1 is partly located within mitochondria and binds to the mitochondrial ribosomal protein MRPL35. Overexpression of ADPGK-AS1 in macrophages upregulates the tricarboxylic acid cycle and promotes mitochondrial fission, suggesting a phenotypic switch toward an M2-like, tumor-promoting cytokine release profile. Macrophage-specific knockdown of ADPGK-AS1 induces a metabolic and phenotypic switch (as judged by cytokine profile and production of reactive oxygen species) to a pro-inflammatory tumor-suppressive M1-like state, inhibiting lung tumor growth in vitro in tumor cell-macrophage cocultures, ex vivo in human tumor precision-cut lung slices, and in vivo in mice. Silencing ADPGK-AS1 in TAMs may thus offer a novel therapeutic strategy for lung cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Citocinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
Circ Res ; 132(11): 1468-1485, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37042252

RESUMO

BACKGROUND: The ability of the right ventricle (RV) to adapt to an increased pressure afterload determines survival in patients with pulmonary arterial hypertension. At present, there are no specific treatments available to prevent RV failure, except for heart/lung transplantation. The wingless/int-1 (Wnt) signaling pathway plays an important role in the development of the RV and may also be implicated in adult cardiac remodeling. METHODS: Molecular, biochemical, and pharmacological approaches were used both in vitro and in vivo to investigate the role of Wnt signaling in RV remodeling. RESULTS: Wnt/ß-catenin signaling molecules are upregulated in RV of patients with pulmonary arterial hypertension and animal models of RV overload (pulmonary artery banding-induced and monocrotaline rat models). Activation of Wnt/ß-catenin signaling leads to RV remodeling via transcriptional activation of FOSL1 and FOSL2 (FOS proto-oncogene [FOS] like 1/2, AP-1 [activator protein 1] transcription factor subunit). Immunohistochemical analysis of pulmonary artery banding -exposed BAT-Gal (ß-catenin-activated transgene driving expression of nuclear ß-galactosidase) reporter mice RVs exhibited an increase in ß-catenin expression compared with their respective controls. Genetic inhibition of ß-catenin, FOSL1/2, or WNT3A stimulation of RV fibroblasts significantly reduced collagen synthesis and other remodeling genes. Importantly, pharmacological inhibition of Wnt signaling using inhibitor of PORCN (porcupine O-acyltransferase), LGKK-974 attenuated fibrosis and cardiac hypertrophy leading to improvement in RV function in both, pulmonary artery banding - and monocrotaline-induced RV overload. CONCLUSIONS: Wnt- ß-Catenin-FOSL signaling is centrally involved in the hypertrophic RV response to increased afterload, offering novel targets for therapeutic interference with RV failure in pulmonary hypertension.


Assuntos
Insuficiência Cardíaca , Hipertensão Arterial Pulmonar , Ratos , Camundongos , Animais , Remodelação Ventricular , beta Catenina , Cateninas , Monocrotalina/toxicidade , Transdução de Sinais , Modelos Animais de Doenças , Função Ventricular Direita
4.
Nature ; 568(7751): 193-197, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30944477

RESUMO

Genetic robustness, or the ability of an organism to maintain fitness in the presence of harmful mutations, can be achieved via protein feedback loops. Previous work has suggested that organisms may also respond to mutations by transcriptional adaptation, a process by which related gene(s) are upregulated independently of protein feedback loops. However, the prevalence of transcriptional adaptation and its underlying molecular mechanisms are unknown. Here, by analysing several models of transcriptional adaptation in zebrafish and mouse, we uncover a requirement for mutant mRNA degradation. Alleles that fail to transcribe the mutated gene do not exhibit transcriptional adaptation, and these alleles give rise to more severe phenotypes than alleles displaying mutant mRNA decay. Transcriptome analysis in alleles displaying mutant mRNA decay reveals the upregulation of a substantial proportion of the genes that exhibit sequence similarity with the mutated gene's mRNA, suggesting a sequence-dependent mechanism. These findings have implications for our understanding of disease-causing mutations, and will help in the design of mutant alleles with minimal transcriptional adaptation-derived compensation.


Assuntos
Adaptação Fisiológica/genética , Mutação , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/genética , Regulação para Cima/genética , Alelos , Animais , Epigênese Genética/genética , Histonas/metabolismo , Camundongos , Peixe-Zebra/genética
6.
Circulation ; 144(13): 1042-1058, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34247492

RESUMO

BACKGROUND: The pathogenesis of life-threatening cardiopulmonary diseases such as pulmonary hypertension (PH) and chronic obstructive pulmonary disease (COPD) originates from a complex interplay of environmental factors and genetic predispositions that is not fully understood. Likewise, little is known about developmental abnormalities or epigenetic dysregulations that might predispose for PH or COPD in adult individuals. METHODS: To identify pathology-associated epigenetic alteration in diseased lung tissues, we screened a cohort of human patients with PH and COPD for changes of histone modifications by immunofluorescence staining. To analyze the function of H4K20me2/3 in lung pathogenesis, we developed a series of Suv4-20h1 knockout mouse lines targeting cardiopulmonary progenitor cells and different heart and lung cell types, followed by hemodynamic studies and morphometric assessment of tissue samples. Molecular, cellular, and biochemical techniques were applied to analyze the function of Suv4-20h1-dependent epigenetic processes in cardiopulmonary progenitor cells and their derivatives. RESULTS: We discovered a strong reduction of the histone modifications of H4K20me2/3 in human patients with COPD but not patients with PH that depend on the activity of the H4K20 di-methyltransferase SUV4-20H1. Loss of Suv4-20h1 in cardiopulmonary progenitor cells caused a COPD-like/PH phenotype in mice including the formation of perivascular tertiary lymphoid tissue and goblet cell hyperplasia, hyperproliferation of smooth muscle cells/myofibroblasts, impaired alveolarization and maturation defects of the microvasculature leading to massive right ventricular dilatation and premature death. Mechanistically, SUV4-20H1 binds directly to the 5'-upstream regulatory element of the superoxide dismutase 3 (Sod3) gene to repress its expression. Increased levels of the extracellular SOD3 enzyme in Suv4-20h1 mutants increases hydrogen peroxide concentrations, causing vascular defects and impairing alveolarization. CONCLUSIONS: Our findings reveal a pivotal role of the histone modifier SUV4-20H1 in cardiopulmonary codevelopment and uncover the developmental origins of cardiopulmonary diseases. We assume that the study will facilitate the understanding of pathogenic events causing PH and COPD and aid the development of epigenetic drugs for the treatment of cardiopulmonary diseases.


Assuntos
Epigênese Genética/genética , Histona-Lisina N-Metiltransferase/metabolismo , Hipertensão Pulmonar/genética , Doença Pulmonar Obstrutiva Crônica/genética , Células-Tronco/metabolismo , Animais , Humanos , Camundongos , Camundongos Knockout
7.
Development ; 146(11)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31097478

RESUMO

The development of a vascular network is essential to nourish tissues and sustain organ function throughout life. Endothelial cells (ECs) are the building blocks of blood vessels, yet our understanding of EC specification remains incomplete. Zebrafish cloche/npas4l mutants have been used broadly as an avascular model, but little is known about the molecular mechanisms of action of the Npas4l transcription factor. Here, to identify its direct and indirect target genes, we have combined complementary genome-wide approaches, including transcriptome analyses and chromatin immunoprecipitation. The cross-analysis of these datasets indicates that Npas4l functions as a master regulator by directly inducing a group of transcription factor genes that are crucial for hematoendothelial specification, such as etv2, tal1 and lmo2 We also identified new targets of Npas4l and investigated the function of a subset of them using the CRISPR/Cas9 technology. Phenotypic characterization of tspan18b mutants reveals a novel player in developmental angiogenesis, confirming the reliability of the datasets generated. Collectively, these data represent a useful resource for future studies aimed to better understand EC fate determination and vascular development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Endotélio Vascular/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Neovascularização Fisiológica/genética , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação/genética , Diferenciação Celular/genética , Mapeamento Cromossômico/métodos , Conjuntos de Dados como Assunto , Embrião não Mamífero , Células Endoteliais/fisiologia , Endotélio Vascular/metabolismo , Genômica/métodos , Proteínas com Domínio LIM/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Fatores de Transcrição/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Circ Res ; 126(12): 1760-1778, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32312172

RESUMO

RATIONALE: The adult human heart is an organ with low regenerative potential. Heart failure following acute myocardial infarction is a leading cause of death due to the inability of cardiomyocytes to proliferate and replenish lost cardiac muscle. While the zebrafish has emerged as a powerful model to study endogenous cardiac regeneration, the molecular mechanisms by which cardiomyocytes respond to damage by disassembling sarcomeres, proliferating, and repopulating the injured area remain unclear. Furthermore, we are far from understanding the regulation of the chromatin landscape and epigenetic barriers that must be overcome for cardiac regeneration to occur. OBJECTIVE: To identify transcription factor regulators of the chromatin landscape, which promote cardiomyocyte regeneration in zebrafish, and investigate their function. METHODS AND RESULTS: Using the Assay for Transposase-Accessible Chromatin coupled to high-throughput sequencing (ATAC-Seq), we first find that the regenerating cardiomyocyte chromatin accessibility landscape undergoes extensive changes following cryoinjury, and that activator protein-1 (AP-1) binding sites are the most highly enriched motifs in regions that gain accessibility during cardiac regeneration. Furthermore, using bioinformatic and gene expression analyses, we find that the AP-1 response in regenerating adult zebrafish cardiomyocytes is largely different from the response in adult mammalian cardiomyocytes. Using a cardiomyocyte-specific dominant negative approach, we show that blocking AP-1 function leads to defects in cardiomyocyte proliferation as well as decreased chromatin accessibility at the fbxl22 and ilk loci, which regulate sarcomere disassembly and cardiomyocyte protrusion into the injured area, respectively. We further show that overexpression of the AP-1 family members Junb and Fosl1 can promote changes in mammalian cardiomyocyte behavior in vitro. CONCLUSIONS: AP-1 transcription factors play an essential role in the cardiomyocyte response to injury by regulating chromatin accessibility changes, thereby allowing the activation of gene expression programs that promote cardiomyocyte dedifferentiation, proliferation, and protrusion into the injured area.


Assuntos
Cromatina/metabolismo , Miócitos Cardíacos/metabolismo , Regeneração , Sarcômeros/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Células Cultivadas , Miócitos Cardíacos/fisiologia , Proteínas Serina-Treonina Quinases/genética , Ratos , Ratos Sprague-Dawley , Sarcômeros/fisiologia , Fator de Transcrição AP-1/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
9.
EMBO Rep ; 21(8): e49752, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32648304

RESUMO

Cardiac metabolism plays a crucial role in producing sufficient energy to sustain cardiac function. However, the role of metabolism in different aspects of cardiomyocyte regeneration remains unclear. Working with the adult zebrafish heart regeneration model, we first find an increase in the levels of mRNAs encoding enzymes regulating glucose and pyruvate metabolism, including pyruvate kinase M1/2 (Pkm) and pyruvate dehydrogenase kinases (Pdks), especially in tissues bordering the damaged area. We further find that impaired glycolysis decreases the number of proliferating cardiomyocytes following injury. These observations are supported by analyses using loss-of-function models for the metabolic regulators Pkma2 and peroxisome proliferator-activated receptor gamma coactivator 1 alpha. Cardiomyocyte-specific loss- and gain-of-function manipulations of pyruvate metabolism using Pdk3 as well as a catalytic subunit of the pyruvate dehydrogenase complex (PDC) reveal its importance in cardiomyocyte dedifferentiation and proliferation after injury. Furthermore, we find that PDK activity can modulate cell cycle progression and protrusive activity in mammalian cardiomyocytes in culture. Our findings reveal new roles for cardiac metabolism and the PDK-PDC axis in cardiomyocyte behavior following cardiac injury.


Assuntos
Miócitos Cardíacos , Peixe-Zebra , Animais , Proliferação de Células , Glicólise , Miócitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Peixe-Zebra/metabolismo
11.
PLoS Genet ; 14(11): e1007743, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30457989

RESUMO

Development and function of tissues and organs are powered by the activity of mitochondria. In humans, inherited genetic mutations that lead to progressive mitochondrial pathology often manifest during infancy and can lead to death, reflecting the indispensable nature of mitochondrial biogenesis and function. Here, we describe a zebrafish mutant for the gene mia40a (chchd4a), the life-essential homologue of the evolutionarily conserved Mia40 oxidoreductase which drives the biogenesis of cysteine-rich mitochondrial proteins. We report that mia40a mutant animals undergo progressive cellular respiration defects and develop enlarged mitochondria in skeletal muscles before their ultimate death at the larval stage. We generated a deep transcriptomic and proteomic resource that allowed us to identify abnormalities in the development and physiology of endodermal organs, in particular the liver and pancreas. We identify the acinar cells of the exocrine pancreas to be severely affected by mutations in the MIA pathway. Our data contribute to a better understanding of the molecular, cellular and organismal effects of mitochondrial deficiency, important for the accurate diagnosis and future treatment strategies of mitochondrial diseases.

12.
Dev Biol ; 454(1): 21-28, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201802

RESUMO

The phenotypes caused by morpholino-mediated interference of gene function in zebrafish are often not observed in the corresponding mutant(s). We took advantage of the availability of a relatively large collection of transcriptomic datasets to identify common signatures that characterize morpholino-injected animals (morphants). In addition to the previously reported activation of tp53 expression, we observed increased expression of the interferon-stimulated genes (ISGs), isg15 and isg20, the cell death pathway gene casp8, and other cellular stress response genes including phlda3, mdm2 and gadd45aa. Studies involving segmentation stage embryos were more likely to show upregulation of these genes. We also found that the expression of these genes could be upregulated by increasing doses of an egfl7 morpholino, or even high doses of the standard control morpholino. Thus, these data show that morpholinos can induce the expression of ISGs in zebrafish embryos and further our understanding of morpholino effects.


Assuntos
Interferons/metabolismo , Morfolinos/farmacologia , Proteína Supressora de Tumor p53/genética , Proteínas de Peixe-Zebra/genética , Animais , Regulação para Baixo/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Silenciamento de Genes/métodos , Interferons/genética , Morfolinos/metabolismo , Mutação/efeitos dos fármacos , Fenótipo , Estresse Fisiológico/imunologia , Estresse Fisiológico/fisiologia , Proteína Supressora de Tumor p53/imunologia , Regulação para Cima/efeitos dos fármacos , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/metabolismo
13.
Bioinformatics ; 35(6): 1055-1057, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30535135

RESUMO

MOTIVATION: High throughput (HT) screens in the omics field are typically analyzed by automated pipelines that generate static visualizations and comprehensive spreadsheet data for scientists. However, exploratory and hypothesis driven data analysis are key aspects of the understanding of biological systems, both generating extensive need for customized and dynamic visualization. RESULTS: Here we describe WIlsON, an interactive workbench for analysis and visualization of multi-omics data. It is primarily intended to empower screening platforms to offer access to pre-calculated HT screen results to the non-computational scientist. Facilitated by an open file format, WIlsON supports all types of omics screens, serves results via a web-based dashboard, and enables end users to perform analyses and generate publication-ready plots. AVAILABILITY AND IMPLEMENTATION: We implemented WIlsON in R with a focus on extensibility using the modular Shiny and Plotly frameworks. A demo of the interactive workbench without limitations may be accessed at http://loosolab.mpi-bn.mpg.de. A standalone Docker container as well as the source code of WIlsON are freely available from our Docker hub https://hub.docker. com/r/loosolab/wilson, CRAN https://cran.r-project.org/web/packages/wilson/, and GitHub repository https://github.molgen.mpg.de/loosolab/wilson-apps, respectively.


Assuntos
Internet , Software
14.
Circ Res ; 122(1): 31-46, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29158345

RESUMO

RATIONALE: Human cardiac mesenchymal cells (CMSCs) are a therapeutically relevant primary cell population. Diabetes mellitus compromises CMSC function as consequence of metabolic alterations and incorporation of stable epigenetic changes. OBJECTIVE: To investigate the role of α-ketoglutarate (αKG) in the epimetabolic control of DNA demethylation in CMSCs. METHODS AND RESULTS: Quantitative global analysis, methylated and hydroxymethylated DNA sequencing, and gene-specific GC methylation detection revealed an accumulation of 5-methylcytosine, 5-hydroxymethylcytosine, and 5-formylcytosine in the genomic DNA of human CMSCs isolated from diabetic donors. Whole heart genomic DNA analysis revealed iterative oxidative cytosine modification accumulation in mice exposed to high-fat diet (HFD), injected with streptozotocin, or both in combination (streptozotocin/HFD). In this context, untargeted and targeted metabolomics indicated an intracellular reduction of αKG synthesis in diabetic CMSCs and in the whole heart of HFD mice. This observation was paralleled by a compromised TDG (thymine DNA glycosylase) and TET1 (ten-eleven translocation protein 1) association and function with TET1 relocating out of the nucleus. Molecular dynamics and mutational analyses showed that αKG binds TDG on Arg275 providing an enzymatic allosteric activation. As a consequence, the enzyme significantly increased its capacity to remove G/T nucleotide mismatches or 5-formylcytosine. Accordingly, an exogenous source of αKG restored the DNA demethylation cycle by promoting TDG function, TET1 nuclear localization, and TET/TDG association. TDG inactivation by CRISPR/Cas9 knockout or TET/TDG siRNA knockdown induced 5-formylcytosine accumulation, thus partially mimicking the diabetic epigenetic landscape in cells of nondiabetic origin. The novel compound (S)-2-[(2,6-dichlorobenzoyl)amino]succinic acid (AA6), identified as an inhibitor of αKG dehydrogenase, increased the αKG level in diabetic CMSCs and in the heart of HFD and streptozotocin mice eliciting, in HFD, DNA demethylation, glucose uptake, and insulin response. CONCLUSIONS: Restoring the epimetabolic control of DNA demethylation cycle promises beneficial effects on cells compromised by environmental metabolic changes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Ácidos Cetoglutáricos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Oxigenases de Função Mista/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Timina DNA Glicosilase/metabolismo , Animais , Células Cultivadas , Citosina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Inibidores Enzimáticos/farmacologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácidos Cetoglutáricos/antagonistas & inibidores , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos
15.
BMC Bioinformatics ; 17(1): 210, 2016 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-27170328

RESUMO

BACKGROUND: MicroRNAs (miRNAs) impact various biological processes within animals and plants. They complementarily bind target mRNAs, effecting a post-transcriptional negative regulation on mRNA level. The investigation of miRNA target interactions (MTIs) by high throughput screenings is challenging, as frequently used in silico target prediction tools are prone to emit false positives. This issue is aggravated for niche model organisms, where validated miRNAs and MTIs both have to be transferred from well described model organisms. Even though DBs exist that contain experimentally validated MTIs, they are limited in their search options and they utilize different miRNA and target identifiers. RESULTS: The implemented pipeline LimiTT integrates four existing DBs containing experimentally validated MTIs. In contrast to other cumulative databases (DBs), LimiTT includes MTI data of 26 species. Additionally, the pipeline enables the identification and enrichment analysis of MTIs with and without species specificity based on dynamic quality criteria. Multiple tabular and graphical outputs are generated to permit the detailed assessment of results. CONCLUSION: Our freely available web-based pipeline LimiTT ( https://bioinformatics.mpi-bn.mpg.de/ ) is optimized to determine MTIs with and without species specification. It links miRNAs and/or putative targets with high granularity. The integrated mapping to homologous target identifiers enables the identification of MTIs not only for standard models, but for niche model organisms as well.


Assuntos
MicroRNAs/genética , Software , Animais , Simulação por Computador , Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Anotação de Sequência Molecular , RNA Mensageiro/genética , Reprodutibilidade dos Testes
16.
Bioinformatics ; 30(23): 3412-3, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25165094

RESUMO

UNLABELLED: MicroRNAs (miRNAs) represent an important class of small non-coding RNAs regulating gene expression in eukaryotes. Present algorithms typically rely on genomic data to identify miRNAs and require extensive installation procedures. Niche model organisms lacking genomic sequences cannot be analyzed by such tools. Here we introduce the MIRPIPE application enabling rapid and simple browser-based miRNA homology detection and quantification. MIRPIPE features automatic trimming of raw RNA-Seq reads originating from various sequencing instruments, processing of isomiRs and quantification of detected miRNAs versus public- or user-uploaded reference databases. AVAILABILITY AND IMPLEMENTATION: The Web service is freely available at http://bioinformatics.mpi-bn.mpg.de. MIRPIPE was implemented in Perl and integrated into Galaxy. An offline version for local execution is also available from our Web site.


Assuntos
MicroRNAs/química , Análise de Sequência de RNA/métodos , Software , Algoritmos , Humanos , Modelos Biológicos
17.
Nat Genet ; 56(4): 697-709, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509386

RESUMO

In mice, exit from the totipotent two-cell (2C) stage embryo requires silencing of the 2C-associated transcriptional program. However, the molecular mechanisms involved in this process remain poorly understood. Here we demonstrate that the 2C-specific transcription factor double homeobox protein (DUX) mediates an essential negative feedback loop by inducing the expression of DUXBL to promote this silencing. We show that DUXBL gains accessibility to DUX-bound regions specifically upon DUX expression. Furthermore, we determine that DUXBL interacts with TRIM24 and TRIM33, members of the TRIM superfamily involved in gene silencing, and colocalizes with them in nuclear foci upon DUX expression. Importantly, DUXBL overexpression impairs 2C-associated transcription, whereas Duxbl inactivation in mouse embryonic stem cells increases DUX-dependent induction of the 2C-transcriptional program. Consequently, DUXBL deficiency in embryos results in sustained expression of 2C-associated transcripts leading to early developmental arrest. Our study identifies DUXBL as an essential regulator of totipotency exit enabling the first divergence of cell fates.


Assuntos
Genes Homeobox , Proteínas de Homeodomínio , Células-Tronco Embrionárias Murinas , Fatores de Transcrição , Animais , Camundongos , Diferenciação Celular , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo
18.
BMC Genomics ; 14: 47, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23339658

RESUMO

BACKGROUND: Listeria monocytogenes is an important food-borne pathogen and model organism for host-pathogen interaction, thus representing an invaluable target considering research on the forces governing the evolution of such microbes. The diversity of this species has not been exhaustively explored yet, as previous efforts have focused on analyses of serotypes primarily implicated in human listeriosis. We conducted complete genome sequencing of 11 strains employing 454 GS FLX technology, thereby achieving full coverage of all serotypes including the first complete strains of serotypes 1/2b, 3c, 3b, 4c, 4d, and 4e. These were comparatively analyzed in conjunction with publicly available data and assessed for pathogenicity in the Galleria mellonella insect model. RESULTS: The species pan-genome of L. monocytogenes is highly stable but open, suggesting an ability to adapt to new niches by generating or including new genetic information. The majority of gene-scale differences represented by the accessory genome resulted from nine hyper variable hotspots, a similar number of different prophages, three transposons (Tn916, Tn554, IS3-like), and two mobilizable islands. Only a subset of strains showed CRISPR/Cas bacteriophage resistance systems of different subtypes, suggesting a supplementary function in maintenance of chromosomal stability. Multiple phylogenetic branches of the genus Listeria imply long common histories of strains of each lineage as revealed by a SNP-based core genome tree highlighting the impact of small mutations for the evolution of species L. monocytogenes. Frequent loss or truncation of genes described to be vital for virulence or pathogenicity was confirmed as a recurring pattern, especially for strains belonging to lineages III and II. New candidate genes implicated in virulence function were predicted based on functional domains and phylogenetic distribution. A comparative analysis of small regulatory RNA candidates supports observations of a differential distribution of trans-encoded RNA, hinting at a diverse range of adaptations and regulatory impact. CONCLUSIONS: This study determined commonly occurring hyper variable hotspots and mobile elements as primary effectors of quantitative gene-scale evolution of species L. monocytogenes, while gene decay and SNPs seem to represent major factors influencing long-term evolution. The discovery of common and disparately distributed genes considering lineages, serogroups, serotypes and strains of species L. monocytogenes will assist in diagnostic, phylogenetic and functional research, supported by the comparative genomic GECO-LisDB analysis server (http://bioinfo.mikrobio.med.uni-giessen.de/geco2lisdb).


Assuntos
Genoma Bacteriano/genética , Sequências Repetitivas Dispersas/genética , Listeria monocytogenes/genética , Adaptação Fisiológica/genética , Animais , Sequência Conservada , Elementos de DNA Transponíveis/genética , Evolução Molecular , Marcadores Genéticos/genética , Ilhas Genômicas/genética , Genômica , Humanos , Internet , Sequências Repetidas Invertidas/genética , Listeria monocytogenes/patogenicidade , Listeria monocytogenes/fisiologia , Listeria monocytogenes/virologia , Modelos Genéticos , Filogenia , Prófagos/fisiologia , Pequeno RNA não Traduzido/genética , Coelhos , Especificidade da Espécie
19.
Nucleic Acids Res ; 39(10): 4235-48, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21278422

RESUMO

Small non-coding RNAs (sRNAs) are widespread effectors of post-transcriptional gene regulation in bacteria. Currently extensive information exists on the sRNAs of Listeria monocytogenes expressed during growth in extracellular environments. We used deep sequencing of cDNAs obtained from fractioned RNA (<500 nt) isolated from extracellularly growing bacteria and from L. monocytogenes infected macrophages to catalog the sRNA repertoire during intracellular bacterial growth. Here, we report on the discovery of 150 putative regulatory RNAs of which 71 have not been previously described. A total of 29 regulatory RNAs, including small non-coding antisense RNAs, are specifically expressed intracellularly. We validated highly expressed sRNAs by northern blotting and demonstrated by the construction and characterization of isogenic mutants of rli31, rli33-1 and rli50* for intracellular expressed sRNA candidates, that their expression is required for efficient growth of bacteria in macrophages. All three mutants were attenuated when assessed for growth in mouse and insect models of infection. Comparative genomic analysis revealed the presence of lineage specific sRNA candidates and the absence of sRNA loci in genomes of naturally occurring infection-attenuated bacteria, with additional loss in non-pathogenic listerial genomes. Our analyses reveal extensive sRNA expression as an important feature of bacterial regulation during intracellular growth.


Assuntos
Listeria monocytogenes/genética , Macrófagos/microbiologia , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Animais , Linhagem Celular , Feminino , Perfilação da Expressão Gênica , Listeria/genética , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , RNA Antissenso/metabolismo , Sequências Reguladoras de Ácido Ribonucleico , Riboswitch , Análise de Sequência de RNA
20.
Stem Cell Rev Rep ; 19(7): 2361-2377, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37402099

RESUMO

Cells of the inner cell mass (ICM) acquire a unique ability for unlimited self-renewal during transition into embryonic stem cells (ESCs) in vitro, while preserving their natural multi-lineage differentiation potential. Several different pathways have been identified to play roles in ESC formation but the function of non-coding RNAs in this process is poorly understood. Here, we describe several microRNAs (miRNAs) that are crucial for efficient generation of mouse ESCs from ICMs. Using small-RNA sequencing, we characterize dynamic changes in miRNA expression profiles during outgrowth of ICMs in a high-resolution, time-course dependent manner. We report several waves of miRNA transcription during ESC formation, to which miRNAs from the imprinted Dlk1-Dio3 locus contribute extensively. In silico analyses followed by functional investigations reveal that Dlk1-Dio3 locus-embedded miRNAs (miR-541-5p, miR-410-3p, and miR-381-3p), miR-183-5p, and miR-302b-3p promote, while miR-212-5p and let-7d-3p inhibit ESC formation. Collectively, these findings offer new mechanistic insights into the role of miRNAs during ESC derivation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA