RESUMO
Biomass allocation in plants is the foundation for understanding dynamics in ecosystem carbon balance, species competition, and plant-environment interactions. However, existing work on plant allometry has mainly focused on trees, with fewer studies having developed allometric equations for grasses. Grasses with different life histories can vary in their carbon investment by prioritizing the growth of specific organs to survive, outcompete co-occurring plants, and ensure population persistence. Further, because grasses are important fuels for wildfire, the lack of grass allocation data adds uncertainty to process-based models that relate plant physiology to wildfire dynamics. To fill this gap, we conducted a greenhouse experiment with 11 common California grasses varying in photosynthetic pathway and growth form. We measured plant sizes and harvested above- and belowground biomass throughout the life cycle of annual species, while for the establishment stage of perennial grasses to quantify allometric relationships for leaf, stem, and root biomass, as well as plant height and canopy area. We used basal diameter as a reference measure of plant size. Overall, basal diameter is the best predictor for leaf and stem biomass, height, and canopy area. Including height as another predictor can improve model accuracy in predicting leaf and stem biomass and canopy area. Fine root biomass is a function of leaf biomass alone. Species vary in their allometric relationships, with most variation occurring for plant height, canopy area, and stem biomass. We further explored potential trade-offs in biomass allocation across species between leaf and fine root, leaf and stem, and allocation to reproduction. Consistent with our expectation, we found that fast-growing plants allocated a greater fraction to reproduction. Additionally, plant height and specific leaf area negatively influenced the leaf-to-stem ratio. However, contrary to our hypothesis, there were no differences in root-to-leaf ratio between perennial and annual or C4 and C3 plants. Our study provides species-specific and functional-type-specific allometry equations for both above- and belowground organs of 11 common California grass species, enabling nondestructive biomass assessment in California grasslands. These allometric relationships and trade-offs in carbon allocation across species can improve ecosystem model predictions of grassland species interactions and environmental responses through differences in morphology.
Assuntos
Biomassa , Poaceae , Poaceae/fisiologia , California , Clima , Modelos BiológicosRESUMO
Earth system models must predict forest responses to global change in order to simulate future global climate, hydrology, and ecosystem dynamics. These models are increasingly adopting vegetation demographic approaches that explicitly represent tree growth, mortality, and recruitment, enabling advances in the projection of forest vulnerability and resilience, as well as evaluation with field data. To date, simulation of regeneration processes has received far less attention than simulation of processes that affect growth and mortality, in spite of their critical role maintaining forest structure, facilitating turnover in forest composition over space and time, enabling recovery from disturbance, and regulating climate-driven range shifts. Our critical review of regeneration process representations within current Earth system vegetation demographic models reveals the need to improve parameter values and algorithms for reproductive allocation, dispersal, seed survival and germination, environmental filtering in the seedling layer, and tree regeneration strategies adapted to wind, fire, and anthropogenic disturbance regimes. These improvements require synthesis of existing data, specific field data-collection protocols, and novel model algorithms compatible with global-scale simulations. Vegetation demographic models offer the opportunity to more fully integrate ecological understanding into Earth system prediction; regeneration processes need to be a critical part of the effort.
Assuntos
Florestas , Modelos Teóricos , Mudança Climática , Ecossistema , Incêndios , Árvores/fisiologiaRESUMO
Vegetation demographic models (VDMs) endeavor to predict how global forests will respond to climate change. This requires simulating which trees, if any, are able to recruit under changing environmental conditions. We present a new recruitment scheme for VDMs in which functional-type-specific recruitment rates are sensitive to light, soil moisture and the productivity of reproductive trees. We evaluate the scheme by predicting tree recruitment for four tropical tree functional types under varying meteorology and canopy structure at Barro Colorado Island, Panama. We compare predictions to those of a current VDM, quantitative observations and ecological expectations. We find that the scheme improves the magnitude and rank order of recruitment rates among functional types and captures recruitment limitations in response to variable understory light, soil moisture and precipitation regimes. Our results indicate that adopting this framework will improve VDM capacity to predict functional-type-specific tree recruitment in response to climate change, thereby improving predictions of future forest distribution, composition and function.
Assuntos
Árvores , Clima Tropical , Demografia , Florestas , SoloRESUMO
While tropical cyclone regimes are shifting with climate change, the mechanisms underpinning the resistance (ability to withstand disturbance-induced change) and resilience (capacity to return to pre-disturbance reference) of tropical forest litterfall to cyclones remain largely unexplored pantropically. Single-site studies in Australia and Hawaii suggest that litterfall on low-phosphorus (P) soils is more resistant and less resilient to cyclones. We conducted a meta-analysis to investigate the pantropical importance of total soil P in mediating forest litterfall resistance and resilience to 22 tropical cyclones. We evaluated cyclone-induced and post-cyclone litterfall mass (g/m2 /day), and P and nitrogen (N) fluxes (mg/m2 /day) and concentrations (mg/g), all indicators of ecosystem function and essential for nutrient cycling. Across 73 case studies in Australia, Guadeloupe, Hawaii, Mexico, Puerto Rico, and Taiwan, total litterfall mass flux increased from ~2.5 ± 0.3 to 22.5 ± 3 g/m2 /day due to cyclones, with large variation among studies. Litterfall P and N fluxes post-cyclone represented ~5% and 10% of the average annual fluxes, respectively. Post-cyclone leaf litterfall N and P concentrations were 21.6 ± 1.2% and 58.6 ± 2.3% higher than pre-cyclone means. Mixed-effects models determined that soil P negatively moderated the pantropical litterfall resistance to cyclones, with a 100 mg P/kg increase in soil P corresponding to a 32% to 38% decrease in resistance. Based on 33% of the resistance case studies, total litterfall mass flux reached pre-disturbance levels within one-year post-disturbance. A GAMM indicated that soil P, gale wind duration and time post-cyclone jointly moderate the short-term resilience of total litterfall, with the nature of the relationship between resilience and soil P contingent on time and wind duration. Across pantropical forests observed to date, our results indicate that litterfall resistance and resilience in the face of intensifying cyclones will be partially determined by total soil P.
Assuntos
Tempestades Ciclônicas , Fósforo , Ecossistema , Florestas , Solo , ÁrvoresRESUMO
Quantifying the responses of forest disturbances to climate warming is critical to our understanding of carbon cycles and energy balances of the Earth system. The impact of warming on bark beetle outbreaks is complex as multiple drivers of these events may respond differently to warming. Using a novel model of bark beetle biology and host tree interactions, we assessed how contemporary warming affected western pine beetle (Dendroctonus brevicomis) populations and mortality of its host, ponderosa pine (Pinus ponderosa), during an extreme drought in the Sierra Nevada, California, United States. When compared with the field data, our model captured the western pine beetle flight timing and rates of ponderosa pine mortality observed during the drought. In assessing the influence of temperature on western pine beetles, we found that contemporary warming increased the development rate of the western pine beetle and decreased the overwinter mortality rate of western pine beetle larvae leading to increased population growth during periods of lowered tree defense. We attribute a 29.9% (95% CI: 29.4%-30.2%) increase in ponderosa pine mortality during drought directly to increases in western pine beetle voltinism (i.e., associated with increased development rates of western pine beetle) and, to a much lesser extent, reductions in overwintering mortality. These findings, along with other studies, suggest each degree (°C) increase in temperature may have increased the number of ponderosa pine killed by upwards of 35%-40% °C-1 if the effects of compromised tree defenses (15%-20%) and increased western pine beetle populations (20%) are additive. Due to the warming ability to considerably increase mortality through the mechanism of bark beetle populations, models need to consider climate's influence on both host tree stress and the bark beetle population dynamics when determining future levels of tree mortality.
Assuntos
Besouros , Pinus , Animais , Secas , Pinus ponderosa , Casca de Planta , ÁrvoresRESUMO
Deep-water access is arguably the most effective, but under-studied, mechanism that plants employ to survive during drought. Vulnerability to embolism and hydraulic safety margins can predict mortality risk at given levels of dehydration, but deep-water access may delay plant dehydration. Here, we tested the role of deep-water access in enabling survival within a diverse tropical forest community in Panama using a novel data-model approach. We inversely estimated the effective rooting depth (ERD, as the average depth of water extraction), for 29 canopy species by linking diameter growth dynamics (1990-2015) to vapor pressure deficit, water potentials in the whole-soil column, and leaf hydraulic vulnerability curves. We validated ERD estimates against existing isotopic data of potential water-access depths. Across species, deeper ERD was associated with higher maximum stem hydraulic conductivity, greater vulnerability to xylem embolism, narrower safety margins, and lower mortality rates during extreme droughts over 35 years (1981-2015) among evergreen species. Species exposure to water stress declined with deeper ERD indicating that trees compensate for water stress-related mortality risk through deep-water access. The role of deep-water access in mitigating mortality of hydraulically-vulnerable trees has important implications for our predictive understanding of forest dynamics under current and future climates.
Assuntos
Secas , Árvores , Florestas , Folhas de Planta , Água , Abastecimento de Água , XilemaRESUMO
The fate of tropical forests under climate change is unclear as a result, in part, of the uncertainty in projected changes in precipitation and in the ability of vegetation models to capture the effects of drought-induced mortality on aboveground biomass (AGB). We evaluated the ability of a terrestrial biosphere model with demography and hydrodynamics (Ecosystem Demography, ED2-hydro) to simulate AGB and mortality of four tropical tree plant functional types (PFTs) that operate along light- and water-use axes. Model predictions were compared with observations of canopy trees at Barro Colorado Island (BCI), Panama. We then assessed the implications of eight hypothetical precipitation scenarios, including increased annual precipitation, reduced inter-annual variation, El Niño-related droughts and drier wet or dry seasons, on AGB and functional diversity of the model forest. When forced with observed meteorology, ED2-hydro predictions capture multiple BCI benchmarks. ED2-hydro predicts that AGB will be sustained under lower rainfall via shifts in the functional composition of the forest, except under the drier dry-season scenario. These results support the hypothesis that inter-annual variation in mean and seasonal precipitation promotes the coexistence of functionally diverse PFTs because of the relative differences in mortality rates. If the hydroclimate becomes chronically drier or wetter, functional evenness related to drought tolerance may decline.
Assuntos
Biodiversidade , Biomassa , Florestas , Clima Tropical , Água , Colorado , Simulação por Computador , Secas , Modelos Teóricos , ChuvaRESUMO
Understanding how climate warming will affect the demographic rates of different ecotypes is critical to predicting shifts in species distributions. Here, we present results from a common garden, climate change experiment in which we measured seedling recruitment of lodgepole pine, a widespread North American conifer that is also planted globally. Seeds from a low-elevation provenance had more than three-fold greater recruitment to their third year than seeds from a high-elevation provenance across sites within and above its native elevation range and across climate manipulations. Heating halved recruitment to the third year of both low- and high-elevation seed sources across the elevation gradient, while watering more than doubled recruitment, alleviating some of the negative effects of heating. Demographic models based on recruitment data from the climate manipulations and long-term observations of adult populations revealed that heating could effectively halt modeled upslope range expansion except when combined with watering. Simulating fire and rapid postfire forest recovery at lower elevations accelerated lodgepole pine expansion into the alpine, but did not alter final abundance rankings among climate scenarios. Regardless of climate scenario, greater recruitment of low-elevation seeds compensated for longer dispersal distances to treeline, assuming colonization was allowed to proceed over multiple centuries. Our results show that ecotypes from lower elevations within a species' range could enhance recruitment and facilitate upslope range shifts with climate change.
Assuntos
Mudança Climática , Florestas , Pinus/fisiologia , Sementes/fisiologia , Demografia , Incêndios , Plântula , ÁguaRESUMO
Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, but raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season-average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first-year recruitment in the forest, but had no net effect on fourth-year recruitment at any site. Watering during the snow-free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low-elevation seeds of both species initially recruited more strongly than high-elevation seeds across the elevation gradient, although the low-provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High- and low-elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high-provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower sensitivity of limber pine to warming indicates a potential for this species to become more important in subalpine forest communities in the coming centuries.
Assuntos
Clima , Florestas , Árvores , Picea , PinusRESUMO
Mountain meadows have high biodiversity and help regulate stream water release following the snowmelt pulse. However, many meadows are experiencing woody plant encroachment, threatening these ecosystem services. While there have been field surveys of individual meadows and remote sensing-based landscape-scale studies of encroachment, what is missing is a broad-scale, ground-based study to understand common regional drivers, especially at high elevations, where land management has often played a less direct role. With this study, we ask: What are the climate and landscape conditions conducive to woody plant encroachment at the landscape scale, and how has historical climate variation affected tree recruitment in subalpine meadows over time? We measured density of encroaching trees across 340 subalpine meadows in the central Sierra Nevada, California, USA, and used generalized additive models (GAMs) to determine the relationship between landscape-scale patterns of encroachment and meadow environmental properties. We determined ages of trees in 30 survey meadows, used observed climate and GAMs to model the relationship between timing of recruitment and climate since the early 1900s, and extrapolated recruitment patterns into the future using downscaled climate scenarios. Encroachment was high among meadows with lodgepole pine (Pinus contorta Douglas ex Loudon var. murrayana (Balf.) Engelm.) in the immediate vicinity, at lower elevations, with physical conditions favoring strong soil drying, and with maximum temperatures above or below average. Climatic conditions during the year of germination were unimportant, with tree recruitment instead depending on a 3-yr seed production period prior to germination and a 6-yr seedling establishment period following germination. Recruitment was high when the seed production period had high snowpack, and when the seedling establishment period had warm summer maximum temperatures, high summer precipitation, and high snowpack. Applying our temporal model to downscaled output from four global climate models indicated that the average meadow will shift to forest by the end of the 21st century. Sierra Nevada meadow encroachment by conifers is ubiquitous and associated with climate conditions increasingly favorable for tree recruitment, which will lead to substantial changes in subalpine meadows and the ecosystem services they provide.
Assuntos
Mudança Climática , Clima , Florestas , Pradaria , Pinus/fisiologia , California , Secas , Temperatura Alta , Estações do AnoRESUMO
Coniferous forest nitrogen (N) budgets indicate unknown sources of N. A consistent association between limber pine (Pinus flexilis) and potential N2 -fixing acetic acid bacteria (AAB) indicates that native foliar endophytes may supply subalpine forests with N. To assess whether the P. flexilis-AAB association is consistent across years, we re-sampled P. flexilis twigs at Niwot Ridge, CO and characterized needle endophyte communities via 16S rRNA Illumina sequencing. To investigate whether endophytes have access to foliar N2 , we incubated twigs with (13) N2 -enriched air and imaged radioisotope distribution in needles, the first experiment of its kind using (13) N. We used the acetylene reduction assay to test for nitrogenase activity within P. flexilis twigs four times from June to September. We found evidence for N2 fixation in P. flexilis foliage. N2 diffused readily into needles and nitrogenase activity was positive across sampling dates. We estimate that this association could provide 6.8-13.6 µg N m(-2) d(-1) to P. flexilis stands. AAB dominated the P. flexilis needle endophyte community. We propose that foliar endophytes represent a low-cost, evolutionarily stable N2 -fixing strategy for long-lived conifers. This novel source of biological N2 fixation has fundamental implications for understanding forest N budgets.
Assuntos
Ecossistema , Endófitos/metabolismo , Fixação de Nitrogênio , Pinus/metabolismo , Folhas de Planta/metabolismo , Acetileno/metabolismo , Bactérias/metabolismo , Etilenos/metabolismo , Funções Verossimilhança , Isótopos de Nitrogênio , Nitrogenase/metabolismo , Filogenia , Solo/químicaRESUMO
Climate change is expected to alter primary production and community composition in alpine ecosystems, but the direction and magnitude of change is debated. Warmer, wetter growing seasons may increase productivity; however, in the absence of additional precipitation, increased temperatures may decrease soil moisture, thereby diminishing any positive effect of warming. Since plant species show individual responses to environmental change, responses may depend on community composition and vary across life form or functional groups. We warmed an alpine plant community at Niwot Ridge, Colorado continuously for four years to test whether warming increases or decreases productivity of life form groups and the whole community. We provided supplemental water to a subset of plots to alleviate the drying effect of warming. We measured annual above-ground productivity and soil temperature and moisture, from which we calculated soil degree days and adequate soil moisture days. Using an information-theoretic approach, we observed that positive productivity responses to warming at the community level occur only when warming is combined with supplemental watering; otherwise we observed decreased productivity. Watering also increased community productivity in the absence of warming. Forbs accounted for the majority of the productivity at the site and drove the contingent community response to warming, while cushions drove the generally positive response to watering and graminoids muted the community response. Warming advanced snowmelt and increased soil degree days, while watering increased adequate soil moisture days. Heated and watered plots had more adequate soil moisture days than heated plots. Overall, measured changes in soil temperature and moisture in response to treatments were consistent with expected productivity responses. We found that available soil moisture largely determines the responses of this forb-dominated alpine community to simulated climate warming.
Assuntos
Mudança Climática , Ecossistema , Solo/química , Colorado , Monitoramento Ambiental , Temperatura , ÁguaRESUMO
Climate change is expected to alter primary production and community composition in alpine ecosystems, but the direction and magnitude of change is debated. Warmer, wetter growing seasons may increase productivity; however, in the absence of additional precipitation, increased temperatures may decrease soil moisture, thereby diminishing any positive effect of warming. Since plant species show individual responses to environmental change, responses may depend on community composition and vary across life form or functional groups. We warmed an alpine plant community at Niwot Ridge, Colorado continuously for four years to test whether warming increases or decreases productivity of life form groups and the whole community. We provided supplemental water to a subset of plots to alleviate the drying effect of warming. We measured annual above-ground productivity and soil temperature and moisture, from which we calculated soil degree days and adequate soil moisture days. Using an information-theoretic approach, we observed that positive productivity responses to warming at the community level occur only when warming is combined with supplemental watering; otherwise we observed decreased productivity. Watering also increased community productivity in the absence of warming. Forbs accounted for the majority of the productivity at the site and drove the contingent community response to warming, while cushions drove the generally positive response to watering and graminoids muted the community response. Warming advanced snowmelt and increased soil degree days, while watering increased adequate soil moisture days. Heated and watered plots had more adequate soil moisture days than heated plots. Overall, measured changes in soil temperature and moisture in response to treatments were consistent with expected productivity responses. We found that available soil moisture largely determines the responses of this forb-dominated alpine community to simulated climate warming.
Assuntos
Solo/química , Água/química , Altitude , Mudança Climática , Colorado , Neve , Água/metabolismoRESUMO
Climate change is altering plant species distributions globally, and warming is expected to promote uphill shifts in mountain trees. However, at many cold-edge range limits, such as alpine treelines in the western United States, tree establishment may be colimited by low temperature and low moisture, making recruitment patterns with warming difficult to predict. We measured response functions linking carbon (C) assimilation and temperature- and moisture-related microclimatic factors for limber pine (Pinus flexilis) seedlings growing in a heating × watering experiment within and above the alpine treeline. We then extrapolated these response functions using observed microclimate conditions to estimate the net effects of warming and associated soil drying on C assimilation across an entire growing season. Moisture and temperature limitations were each estimated to reduce potential growing season C gain from a theoretical upper limit by 15-30% (c. 50% combined). Warming above current treeline conditions provided relatively little benefit to modeled net assimilation, whereas assimilation was sensitive to either wetter or drier conditions. Summer precipitation may be at least as important as temperature in constraining C gain by establishing subalpine trees at and above current alpine treelines as seasonally dry subalpine and alpine ecosystems continue to warm.
Assuntos
Temperatura Baixa , Umidade , Fotossíntese , Pinus/fisiologia , Árvores/fisiologia , Colorado , Gases/metabolismo , Microclima , Complexo de Proteína do Fotossistema II/metabolismo , Estações do Ano , Plântula/fisiologia , Solo/química , Fatores de TempoRESUMO
Studies that model the effect of climate change on terrestrial ecosystems often use climate projections from downscaled global climate models (GCMs). These simulations are generally too coarse to capture patterns of fine-scale climate variation, such as the sharp coastal energy and moisture gradients associated with wind-driven upwelling of cold water. Coastal upwelling may limit future increases in coastal temperatures, compromising GCMs' ability to provide realistic scenarios of future climate in these coastal ecosystems. Taking advantage of naturally occurring variability in the high-resolution historic climatic record, we developed multiple fine-scale scenarios of California climate that maintain coherent relationships between regional climate and coastal upwelling. We compared these scenarios against coarse resolution GCM projections at a regional scale to evaluate their temporal equivalency. We used these historically based scenarios to estimate potential suitable habitat for coast redwood (Sequoia sempervirens D. Don) under 'normal' combinations of temperature and precipitation, and under anomalous combinations representative of potential future climates. We found that a scenario of warmer temperature with historically normal precipitation is equivalent to climate projected by GCMs for California by 2020-2030 and that under these conditions, climatically suitable habitat for coast redwood significantly contracts at the southern end of its current range. Our results suggest that historical climate data provide a high-resolution alternative to downscaled GCM outputs for near-term ecological forecasts. This method may be particularly useful in other regions where local climate is strongly influenced by ocean-atmosphere dynamics that are not represented by coarse-scale GCMs.
Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Ecossistema , Dispersão Vegetal , Sequoia/fisiologia , CaliforniaRESUMO
[This corrects the article DOI: 10.1038/s41558-023-01746-w.].
RESUMO
Bacteria on and inside leaves can influence forest tree health and resilience. The distribution and limits of a tree species' range can be influenced by various factors, with biological interactions among the most significant. We investigated the processes shaping the bacterial needle community across the species distribution of limber pine, a widespread Western conifer inhabiting a range of extreme habitats. We tested four hypotheses: (i) Needle community structure varies across sites, with site-specific factors more important to microbial assembly than host species selection; (ii) dispersal limitation structures foliar communities across the range of limber pine; (iii) the relative significance of dispersal and selection differs across sites in the tree species range; and (iv) needle age structures bacterial communities. We characterized needle communities from the needle surface and tissue of limber pine and co-occurring conifers across 16 sites in the limber pine distribution. Our findings confirmed that site characteristics shape the assembly of bacterial communities across the host species range and showed that these patterns are not driven by dispersal limitation. Furthermore, the strength of selection by the host varied by site, possibly due to differences in available microbes. Our study, by focusing on trees in their natural setting, reveals real needle bacterial dynamics in forests, which is key to understanding the balance between stochastic and deterministic processes in shaping forest tree-microbe interactions. Such understanding will be necessary to predict or manipulate these interactions to support forest ecosystem productivity or assist plant migration and adaptation in the face of global change.
RESUMO
Continued changes in climate are projected to alter the geographic distributions of plant species, in part by affecting where individuals can establish from seed. We tested the hypothesis that warming promotes uphill redistribution of subalpine tree populations by reducing cold limitation at high elevation and enhancing drought stress at low elevation. We seeded limber pine (Pinus flexilis) into plots with combinations of infrared heating and water addition treatments, at sites positioned in lower subalpine forest, the treeline ecotone, and alpine tundra. In 2010, first-year seedlings were assessed for physiological performance and survival over the snow-free growing season. Seedlings emerged in midsummer, about 5-8 weeks after snowmelt. Low temperature was not observed to limit seedling photosynthesis or respiration between emergence and October, and thus experimental warming did not appear to reduce cold limitation at high elevation. Instead, gas exchange and water potential from all sites indicated a prevailing effect of summer moisture stress on photosynthesis and carbon balance. Infrared heaters raised soil growing degree days (base 5 °C, p < 0.001) and August-September mean soil temperature (p < 0.001). Despite marked differences in vegetation cover and meteorological conditions across sites, volumetric soil moisture content (θ) at 5-10 cm below 0.16 and 0.08 m(3) m(-3) consistently corresponded with moderate and severe indications of drought stress in midday stem water potential, stomatal conductance, photosynthesis, and respiration. Seedling survival was greater in watered plots than in heated plots (p = 0.01), and negatively related to soil growing degree days and duration of exposure to θ < 0.08 m(3) m(-3) in a stepwise linear regression model (p < 0.0001). We concluded that seasonal moisture stress and high soil surface temperature imposed a strong limitation to limber pine seedling establishment across a broad elevation gradient, including at treeline, and that these limitations are likely to be enhanced by further climate warming.
Assuntos
Pinus/fisiologia , Temperatura , Altitude , Carbono/metabolismo , Secas , Fotossíntese , Estações do Ano , Plântula , Solo , Árvores , ÁguaRESUMO
Rising temperatures are impacting the range and prevalence of mosquito-borne diseases. A promising biocontrol technology replaces wild mosquitoes with those carrying the virus-blocking Wolbachia bacterium. Because the most widely used strain, wMel, is adversely affected by heat stress, we examined how global warming may influence wMel-based replacement. We simulated interventions in two locations with successful field trials using Coupled Model Intercomparison Project Phase 5 climate projections and historical temperature records, integrating empirical data on wMel's thermal sensitivity into a model of Aedes aegypti population dynamics to evaluate introgression and persistence over one year. We show that in Cairns, Australia, climatic futures necessitate operational adaptations for heatwaves exceeding two weeks. In Nha Trang, Vietnam, projected heatwaves of three weeks and longer eliminate wMel under the most stringent assumptions of that symbiont's thermal limits. We conclude that this technology is generally robust to near-term (2030s) climate change. Accelerated warming may challenge this in the 2050s and beyond.