Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Plant J ; 114(3): 668-682, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36825961

RESUMO

Genetic modifications in plants are crucial tools for fundamental and applied research. Transgene expression usually varies among independent lines or their progeny and is associated with the chromatin structure of the insertion site. Strategies based on understanding how to manipulate the epigenetic state of the inserted gene cassette would help to ensure transgene expression. Here, we report a strategy for chromatin manipulation by the artificial tethering of epigenetic effectors to a synthetic human centromeric repetitive DNA (alphoid DNA) platform in plant Bright-Yellow-2 (BY-2) culture cells. By tethering DNA-methyltransferase (Nicotiana tabacum DRM1), we effectively induced DNA methylation and histone methylation (H3K9me2) on the alphoid DNA platform. Tethering of the Arabidopsis SUVH9, which has been reported to lack histone methyltransferase activity, also induced a similar epigenetic state on the alphoid DNA in BY-2 cells, presumably by activating the RNA-dependent DNA methylation (RdDM) pathway. Our results emphasize that the interplay between DNA and histone methylation mechanisms is intrinsic to plant cells. We also found that once epigenetic modification states were induced by the tethering of either DRM1 or SUVH9, the modification was maintained even when the direct tethering of the effector was inhibited. Our system enables the analysis of more diverse epigenetic effectors and will help to elucidate the chromatin assembly mechanisms of plant cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Histonas/genética , Histonas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , DNA/metabolismo , Cromatina/genética , Cromatina/metabolismo , Centrômero/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
J Cell Sci ; 133(15)2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32661090

RESUMO

CENP-B binds to CENP-B boxes on centromeric satellite DNAs (known as alphoid DNA in humans). CENP-B maintains kinetochore function through interactions with CENP-A nucleosomes and CENP-C. CENP-B binding to transfected alphoid DNA can induce de novo CENP-A assembly, functional centromere and kinetochore formation, and subsequent human artificial chromosome (HAC) formation. Furthermore, CENP-B also facilitates H3K9 (histone H3 lysine 9) trimethylation on alphoid DNA, mediated by Suv39h1, at ectopic alphoid DNA integration sites. Excessive heterochromatin invasion into centromere chromatin suppresses CENP-A assembly. It is unclear how CENP-B controls such different chromatin states. Here, we show that the CENP-B acidic domain recruits histone chaperones and many chromatin modifiers, including the H3K36 methylase ASH1L, as well as the heterochromatin components Suv39h1 and HP1 (HP1α, ß and γ, also known as CBX5, CBX1 and CBX3, respectively). ASH1L facilitates the formation of open chromatin competent for CENP-A assembly on alphoid DNA. These results indicate that CENP-B is a nexus for histone modifiers that alternatively promote or suppress CENP-A assembly by mutually exclusive mechanisms. Besides the DNA-binding domain, the CENP-B acidic domain also facilitates CENP-A assembly de novo on transfected alphoid DNA. CENP-B therefore balances CENP-A assembly and heterochromatin formation on satellite DNA.


Assuntos
Cromatina , Heterocromatina , Autoantígenos/genética , Centrômero , Proteína Centromérica A/genética , Cromatina/genética , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Epigênese Genética , Heterocromatina/genética , Humanos
3.
Mol Cell ; 47(5): 722-33, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22841486

RESUMO

Higher-order chromosome structure is assumed to control various DNA-templated reactions in eukaryotes. Meiotic chromosomes implement developed structures called "axes" and "loops"; both are suggested to tether each other, activating Spo11 to catalyze meiotic DNA double-strand breaks (DSBs) at recombination hotspots. We found that the Schizosaccharomyces pombe Spo11 homolog Rec12 and its partners form two distinct subcomplexes, DSBC (Rec6-Rec12-Rec14) and SFT (Rec7-Rec15-Rec24). Mde2, whose expression is strictly regulated by the replication checkpoint, interacts with Rec15 to stabilize the SFT subcomplex and further binds Rec14 in DSBC. Rec10 provides a docking platform for SFT binding to axes and can partially interact with DSB sites located in loops depending upon Mde2, which is indicative of the formation of multiprotein-based tethered axis-loop complex. These data lead us to propose a mechanism by which Mde2 functions as a recombination initiation mediator to tether axes and loops, in liaison with the meiotic replication checkpoint.


Assuntos
Cromossomos/metabolismo , Endodesoxirribonucleases/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Recombinação Genética , Fase S , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Quebras de DNA de Cadeia Dupla , Meiose/genética , Schizosaccharomyces/genética
4.
Nucleic Acids Res ; 46(2): 609-620, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29145618

RESUMO

Meiotic recombination is initiated by programmed formation of DNA double strand breaks (DSBs), which are mainly formed at recombination hotspots. Meiotic DSBs require multiple proteins including the conserved protein Spo11 and its cofactors, and are influenced by chromatin structure. For example, local chromatin around hotspots directly impacts DSB formation. Moreover, DSB is proposed to occur in a higher-order chromatin architecture termed 'axis-loop', in which many loops protrude from cohesin-enriched axis. However, still much remains unknown about how meiotic DSBs are generated in chromatin. Here, we show that the conserved histone H2A variant H2A.Z promotes meiotic DSB formation in fission yeast. Detailed investigation revealed that H2A.Z is neither enriched around hotspots nor axis sites, and that transcript levels of DSB-promoting factors were maintained without H2A.Z. Moreover, H2A.Z appeared to be dispensable for chromatin binding of meiotic cohesin. Instead, in H2A.Z-lacking mutants, multiple proteins involved in DSB formation, such as the fission yeast Spo11 homolog and its regulators, were less associated with chromatin. Remarkably, nuclei were more compact in the absence of H2A.Z. Based on these, we propose that fission yeast H2A.Z promotes meiotic DSB formation partly through modulating chromosome architecture to enhance interaction between DSB-related proteins and cohesin-loaded chromatin.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Fúngico/metabolismo , Histonas/metabolismo , Reparo de DNA por Recombinação , Proteínas de Schizosaccharomyces pombe/metabolismo , Cromatina/genética , Cromatina/metabolismo , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , DNA Fúngico/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Histonas/genética , Recombinação Homóloga , Meiose/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
5.
Nucleic Acids Res ; 46(6): 2932-2944, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29394375

RESUMO

During mild replication stress provoked by low dose aphidicolin (APH) treatment, the key Fanconi anemia protein FANCD2 accumulates on common fragile sites, observed as sister foci, and protects genome stability. To gain further insights into FANCD2 function and its regulatory mechanisms, we examined the genome-wide chromatin localization of FANCD2 in this setting by ChIP-seq analysis. We found that FANCD2 mostly accumulates in the central regions of a set of large transcribed genes that were extensively overlapped with known CFS. Consistent with previous studies, we found that this FANCD2 retention is R-loop-dependent. However, FANCD2 monoubiquitination and RPA foci formation were still induced in cells depleted of R-loops. Interestingly, we detected increased Proximal Ligation Assay dots between FANCD2 and R-loops following APH treatment, which was suppressed by transcriptional inhibition. Collectively, our data suggested that R-loops are required to retain FANCD2 in chromatin at the middle intronic region of large genes, while the replication stress-induced upstream events leading to the FA pathway activation are not triggered by R-loops.


Assuntos
Cromatina/genética , Sítios Frágeis do Cromossomo/genética , Replicação do DNA/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Instabilidade Genômica/genética , Afidicolina/farmacologia , Linhagem Celular Tumoral , Cromatina/metabolismo , DNA/química , DNA/genética , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Conformação de Ácido Nucleico , Transdução de Sinais/genética , Ubiquitinação/efeitos dos fármacos
6.
Nucleic Acids Res ; 45(18): 10333-10349, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28981863

RESUMO

The subtelomere, a telomere-adjacent chromosomal domain, contains species-specific homologous DNA sequences, in addition to various genes. However, the functions of subtelomeres, particularly subtelomeric homologous (SH) sequences, remain elusive. Here, we report the first comprehensive analyses of the cellular functions of SH sequences in the fission yeast, Schizosaccharomyces pombe. Complete removal of SH sequences from the genome revealed that they are dispensable for mitosis, meiosis and telomere length control. However, when telomeres are lost, SH sequences prevent deleterious inter-chromosomal end fusion by facilitating intra-chromosomal circularization. Surprisingly, SH-deleted cells sometimes survive telomere loss through inter-chromosomal end fusions via homologous loci such as LTRs, accompanied by centromere inactivation of either chromosome. Moreover, SH sequences function as a buffer region against the spreading of subtelomeric heterochromatin into the neighboring gene-rich regions. Furthermore, we found a nucleosome-free region at the subtelomeric border, which may be a second barrier that blocks heterochromatin spreading into the subtelomere-adjacent euchromatin. Thus, our results demonstrate multiple defense functions of subtelomeres in chromosome homeostasis and gene expression.


Assuntos
Cromossomos Fúngicos/fisiologia , Expressão Gênica , Homeostase/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Telômero/fisiologia , Centrômero/metabolismo , Instabilidade Cromossômica/genética , Regulação Fúngica da Expressão Gênica , Heterocromatina/metabolismo , Organismos Geneticamente Modificados , Deleção de Sequência , Proteínas de Ligação a Telômeros/metabolismo
7.
Curr Genet ; 64(5): 1015-1019, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29549582

RESUMO

Meiotic recombination ensures faithful chromosome segregation and confers genetic diversity to gametes, and thus, is a key DNA-templated reaction not only for sexual reproduction, but also evolution. This recombination is initiated by programmed DNA double strand breaks (DSBs), which are mainly formed at recombination hotspots. As meiotic DSB formation requires multiple proteins, it is regulated by chromatin structure. In particular, DSB occurs in a higher-order chromatin architecture termed "axis-loop", in which many loops protrude from proteinaceous axis. Previous studies have suggested that assembly of this structure is dependent on chromatin binding of cohesin, which in turn recruits proteins implicated in DSB formation. However, roles of chromatin in meiotic DSB formation are not fully characterized. This review article summarizes our recent report showing that the conserved histone H2A variant H2A.Z promotes meiotic DSB formation in fission yeast. Through a series of experiments, we found that, in H2A.Z-lacking mutants, multiple proteins involved in DSB formation, but not cohesin subunits, are less associated with chromatin. Strikingly, nuclei were more compact in the absence of H2A.Z. These observations led us to propose that fission yeast H2A.Z promotes meiotic DSB formation partly through modulating chromosome architecture to enhance interaction between DSB-related proteins and cohesin-loaded chromatin. In addition, biological implications of our findings are discussed, and their relevance to DSB formation in other species as well as to other DNA-related events are also provided.


Assuntos
Histonas/genética , Meiose/genética , Recombinação Genética , Cromossomos Fúngicos , Quebras de DNA de Cadeia Dupla , DNA Fúngico/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
8.
Biol Lett ; 12(3): 20150817, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27029836

RESUMO

Centromere protein B (CENP-B) is one of the major proteins involved in centromere formation, binding to centromeric repetitive DNA by recognizing a 17 bp motif called the CENP-B box. Hominids (humans and great apes) carry large numbers of CENP-B boxes in alpha satellite DNA (AS, the major centromeric repetitive DNA of simian primates). Only negative results have been reported regarding the presence of the CENP-B box in other primate taxa. Consequently, it is widely believed that the CENP-B box is confined, within primates, to the hominids. We report here that the common marmoset, a New World monkey, contains an abundance of CENP-B boxes in its AS. First, in a long contig sequence we constructed and analysed, we identified the motif in 17 of the 38 alpha satellite repeat units. We then sequenced terminal regions of additional clones and found the motif in many of them. Immunostaining of marmoset cells demonstrated that CENP-B binds to DNA in the centromeric regions of chromosomes. Therefore, functional CENP-B boxes are not confined to hominids. Our results indicate that the efficiency of identification of the CENP-B box may depend largely on the sequencing methods used, and that the CENP-B box in centromeric repetitive DNA may be more common than researchers previously thought.


Assuntos
Callithrix/genética , Proteína B de Centrômero/genética , Centrômero/metabolismo , Motivos de Nucleotídeos , Animais , Sequência de Bases , Callithrix/metabolismo , Proteína B de Centrômero/metabolismo
9.
Genes Cells ; 19(5): 359-73, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24635992

RESUMO

Meiotic chromosome architecture called 'axis-loop structures' and histone modifications have been shown to regulate the Spo11-dependent formation of DNA double-strand breaks (DSBs) that trigger meiotic recombination. Using genome-wide chromatin immunoprecipitation (ChIP) analyses followed by deep sequencing, we compared the genome-wide distribution of the axis protein Rec8 (the kleisin subunit of meiotic cohesin) with that of oligomeric DNA covalently bound to Spo11, indicative of DSB sites. The frequency of DSB sites is overall constant between Rec8 binding sites. However, DSB cold spots are observed in regions spanning ±0.8 kb around Rec8 binding sites. The axis-associated cold spots are not due to the exclusion of Spo11 localization from the axis, because ChIP experiments showed that substantial Spo11 persists at Rec8 binding sites during DSB formation. Spo11 fused with Gal4 DNA binding domain (Gal4BD-Spo11) tethered in close proximity (≤0.8 kb) to Rec8 binding sites hardly forms meiotic DSBs, in contrast with other regions. In addition, H3K4 trimethylation (H3K4me3) remarkably decreases at Rec8 binding sites. These results suggest that reduced histone H3K4me3 in combination with inactivation of Spo11 activity on the axis discourages DSB hot spot formation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/genética , Meiose , Recombinação Genética , Saccharomyces cerevisiae/genética , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Cromátides/ultraestrutura , Proteínas Cromossômicas não Histona/genética , Cromossomos Fúngicos/metabolismo , Cromossomos Fúngicos/ultraestrutura , Quebras de DNA de Cadeia Dupla , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Histonas/metabolismo , Metilação , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Coesinas
10.
Nature ; 456(7218): 130-4, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18820678

RESUMO

Recent transcriptome analyses using high-density tiling arrays and data from large-scale analyses of full-length complementary DNA libraries by the FANTOM3 consortium demonstrate that many transcripts are non-coding RNAs (ncRNAs). These transcriptome analyses indicate that many of the non-coding regions, previously thought to be functionally inert, are actually transcriptionally active regions with various features. Furthermore, most relatively large ( approximately several kilobases) polyadenylated messenger RNA transcripts are transcribed from regions harbouring little coding potential. However, the function of such ncRNAs is mostly unknown and has been a matter of debate. Here we show that RNA polymerase II (RNAPII) transcription of ncRNAs is required for chromatin remodelling at the fission yeast Schizosaccharomyces pombe fbp1(+) locus during transcriptional activation. The chromatin at fbp1(+) is progressively converted to an open configuration, as several species of ncRNAs are transcribed through fbp1(+). This is coupled with the translocation of RNAPII through the region upstream of the eventual fbp1(+) transcriptional start site. Insertion of a transcription terminator into this upstream region abolishes both the cascade of transcription of ncRNAs and the progressive chromatin alteration. Our results demonstrate that transcription through the promoter region is required to make DNA sequences accessible to transcriptional activators and to RNAPII.


Assuntos
Montagem e Desmontagem da Cromatina , RNA não Traduzido/biossíntese , RNA não Traduzido/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transcrição Gênica , Fator 1 Ativador da Transcrição/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas/genética , RNA Polimerase II/metabolismo , Proteínas Repressoras/metabolismo , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição/metabolismo
11.
Front Oncol ; 14: 1237378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390263

RESUMO

Amplification of MYCN is observed in high-risk neuroblastomas (NBs) and is associated with a poor prognosis. MYCN expression is directly regulated by multiple transcription factors, including OCT4, MYCN, CTCF, and p53 in NB. Our previous study showed that inhibition of p53 binding at the MYCN locus induces NB cell death. However, it remains unclear whether inhibition of alternative transcription factor induces NB cell death. In this study, we revealed that the inhibition of OCT4 binding at the MYCN locus, a critical site for the human-specific OCT4-MYCN positive feedback loop, induces caspase-2-mediated cell death in MYCN-amplified NB. We used the CRISPR/deactivated Cas9 (dCas9) technology to specifically inhibit transcription factors from binding to the MYCN locus in the MYCN-amplified NB cell lines CHP134 and IMR32. In both cell lines, the inhibition of OCT4 binding at the MYCN locus reduced MYCN expression, thereby suppressing MYCN-target genes. After inhibition of OCT4 binding, differentially downregulated transcripts were associated with high-open reading frame (ORF) dominance score, which is associated with the translation efficiency of transcripts. These transcripts were enriched in splicing factors, including MYCN-target genes such as HNRNPA1 and PTBP1. Furthermore, transcripts with a high-ORF dominance score were significantly associated with genes whose high expression is associated with a poor prognosis in NB. Because the ORF dominance score correlates with the translation efficiency of transcripts, our findings suggest that MYCN maintains the expression of transcripts with high translation efficiency, contributing to a poor prognosis in NB. In conclusion, the inhibition of OCT4 binding at the MYCN locus resulted in reduced MYCN activity, which in turn led to the downregulation of high-ORF dominance transcripts and subsequently induced caspase-2-mediated cell death in MYCN-amplified NB cells. Therefore, disruption of the OCT4 binding at the MYCN locus may serve as an effective therapeutic strategy for MYCN-amplified NB.

12.
PLoS Genet ; 6(4): e1000910, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20419146

RESUMO

Actin-related proteins are ubiquitous components of chromatin remodelers and are conserved from yeast to man. We have examined the role of the budding yeast actin-related protein Arp6 in gene expression, both as a component of the SWR1 complex (SWR-C) and in its absence. We mapped Arp6 binding sites along four yeast chromosomes using chromatin immunoprecipitation from wild-type and swr1 deleted (swr1Delta) cells. We find that a majority of Arp6 binding sites coincide with binding sites of Swr1, the catalytic subunit of SWR-C, and with the histone H2A variant Htz1 (H2A.Z) deposited by SWR-C. However, Arp6 binding detected at centromeres, the promoters of ribosomal protein (RP) genes, and some telomeres is independent of Swr1 and Htz1 deposition. Given that RP genes and telomeres both show association with the nuclear periphery, we monitored the ability of Arp6 to mediate the localization of chromatin to nuclear pores. Arp6 binding is sufficient to shift a randomly positioned locus to nuclear periphery, even in a swr1Delta strain. Arp6 is also necessary for the pore association of its targeted RP promoters possibly through cell cycle-dependent factors. Loss of Arp6, but not Htz1, leads to an up-regulation of these RP genes. In contrast, the pore-association of GAL1 correlates with Htz1 deposition, and loss of Arp6 reduces both GAL1 activation and peripheral localization. We conclude that Arp6 functions both together with the nucleosome remodeler Swr1 and also without it, to mediate Htz1-dependent and Htz1-independent binding of chromatin domains to nuclear pores. This association is shown to have modulating effects on gene expression.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Expressão Gênica , Histonas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Poro Nuclear/metabolismo , Proteínas Ribossômicas/genética , Sítios de Ligação , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/genética , Histonas/genética , Proteínas dos Microfilamentos/genética
13.
Plant Biotechnol (Tokyo) ; 39(2): 101-110, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35937535

RESUMO

Genome information has been accumulated for many species, and these genes and regulatory sequences are expected to be applied in plants by enhancing or creating new metabolic pathways. We hypothesized that manipulating a long array of repetitive sequences using tethered chromatin modulators would be effective for robust regulation of gene expression in close proximity to the arrays. This approach is based on a human artificial chromosome made of long synthetic repetitive DNA sequences in which we manipulated the chromatin by tethering the modifiers. However, a method for introducing long repetitive DNA sequences into plants has not yet been established. Therefore, we constructed a bacterial artificial chromosome-based binary vector in Escherichia coli cells to generate a construct in which a cassette of marker genes was inserted into 60-kb synthetic human centromeric repetitive DNA. The binary vector was then transferred to Agrobacterium cells and its stable maintenance confirmed. Next, using Agrobacterium-mediated genetic transformation, this construct was successfully introduced into the genome of cultured tobacco BY-2 cells to obtain a large number of stable one-copy strains. ChIP analysis of obtained BY-2 cell lines revealed that the introduced synthetic repetitive DNA has moderate chromatin modification levels with lower heterochromatin (H3K9me2) or euchromatin (H3K4me3) modifications compared to the host centromeric repetitive DNA or an active Tub6 gene, respectively. Such a synthetic DNA sequence with moderate chromatin modification levels is expected to facilitate manipulation of the chromatin structure to either open or closed.

14.
Cells ; 11(9)2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35563684

RESUMO

Human artificial chromosomes (HACs) can be formed de novo by introducing large (>30 kb) centromeric sequences consisting of highly repeated 171-bp alpha satellite (alphoid) DNA into HT1080 cells. However, only a subset of transformed cells successfully establishes HACs. CENP-A chromatin and heterochromatin assemble on the HACs and play crucial roles in chromosome segregation. The CENP-B protein, which binds a 17-bp motif (CENP-B box) in the alphoid DNA, functions in the formation of alternative CENP-A chromatin or heterochromatin states. A balance in the coordinated assembly of these chromatin states on the introduced alphoid DNA is important for HAC formation. To obtain information about the relationship between chromatin architecture and de novo HAC formation efficiency, we tested combinations of two 60-kb synthetic alphoid sequences containing either tetO or lacO plus a functional or mutated CENP-B box combined with a multiple fusion protein tethering system. The combination of mutated and wild-type CENP-B box alphoid repeats significantly enhanced HAC formation. Both CENP-A and HP1α were enriched in the wild-type alphoid DNA, whereas H3K27me3 was enriched on the mutant alphoid array. The presence or absence of CENP-B binding resulted in differences in the assembly of CENP-A chromatin on alphoid arrays and the formation of H3K9me3 or H3K27me3 heterochromatin.


Assuntos
Proteína B de Centrômero , Cromossomos Artificiais Humanos , Proteína Centromérica A/genética , Proteína B de Centrômero/genética , Cromatina , DNA , Heterocromatina , Histonas/metabolismo , Humanos
15.
Curr Biol ; 18(8): 566-75, 2008 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-18406137

RESUMO

BACKGROUND: Chromatin remodeling complexes facilitate the access of enzymes that mediate transcription, replication or repair of DNA by modulating nucleosome position and/or composition. Ino80 is the DNA-dependent Snf2-like ATPase subunit of a complex whose nucleosome remodeling activity requires actin-related proteins, Arp4, Arp5 and Arp8, as well as two RuvB-like DNA helicase subunits. Budding yeast mutants deficient for Ino80 function are not only hypersensitive to reagents that induce DNA double-strand breaks, but also to those that impair replication fork progression. RESULTS: To understand why ino80 mutants are sensitive to agents that perturb DNA replication, we used chromatin immunoprecipitation to map the binding sites of the INO80 chromatin-remodeling complex on four budding yeast chromosomes. We found that Ino80 and Arp5 binding sites coincide with origins of DNA replication and tRNA genes. In addition, Ino80 was bound at 67% of the promoters of genes that are sensitive to ino80 mutation. When replication forks were arrested near origins in the presence of hydroxyurea (HU), the amount of INO80 complex at stalled forks and at unfired origins increased selectively. Importantly, the resumption of DNA replication after release from a HU block was impaired in ino80 mutants. These cells accumulated double-strand breaks as they attempted to restart replication. Consistently, ino80-deficient cells, although proficient for checkpoint activation, delay recovery from the checkpoint response. CONCLUSIONS: The INO80 chromatin remodeling complex is enriched at stalled replication forks, where it promotes the resumption of replication upon recovery from fork arrest.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Replicação do DNA/fisiologia , Origem de Replicação/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Quebras de DNA de Cadeia Dupla , DNA Polimerase II/metabolismo , Hidroxiureia/metabolismo , Mutação , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , RNA de Transferência/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Fase S/fisiologia , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
16.
DNA Repair (Amst) ; 8(6): 690-6, 2009 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-19261547

RESUMO

Checkpoints are cellular surveillance and signaling pathways that regulate responses to DNA damage and perturbations of DNA replication. Here we show that high levels of sumoylated Rad52 are present in the mec1 sml1 and rad53 sml1 checkpoint mutants exposed to DNA-damaging agents such as methyl methanesulfonate (MMS) or the DNA replication inhibitor hydroxyurea (HU). The kinase-defective mutant rad53-K227A also showed high levels of Rad52 sumoylation. Elevated levels of Rad52 sumoylation occur in checkpoint mutants proceeding S phase being exposed DNA-damaging agent. Interestingly, chromatin immunoprecipitation (ChIP) on chip analyses revealed non-canonical chromosomal localization of Rad52 in the HU-treated rad53-K227A cells arrested in early S phase: Rad52 localization at dormant and early DNA replication origins. However, such unusual localization was not dependent on the sumoylation of Rad52. In addition, we also found that Rad52 could be highly sumoylated in the absence of Rad51. Double mutation of RAD51 and RAD53 exhibited the similar levels of Rad52 sumoylation to RAD53 single mutation. The significance and regulation mechanism of Rad52 sumoylation by checkpoint pathways will be discussed.


Assuntos
Replicação do DNA , DNA Bacteriano/genética , Mutação/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Imunoprecipitação da Cromatina , DNA Fúngico , Citometria de Fluxo , Immunoblotting , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
17.
Nucleic Acids Res ; 36(3): 984-97, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18096626

RESUMO

Meiotic recombination is initiated by programmed DNA double-strand break (DSB) formation mediated by Spo11. DSBs occur with frequency in chromosomal regions called hot domains but are seldom seen in cold domains. To obtain insights into the determinants of the distribution of meiotic DSBs, we examined the effects of inducing targeted DSBs during yeast meiosis using a UAS-directed form of Spo11 (Gal4BD-Spo11) and a meiosis-specific endonuclease, VDE (PI-SceI). Gal4BD-Spo11 cleaved its target sequence (UAS) integrated in hot domains but rarely in cold domains. However, Gal4BD-Spo11 did bind to UAS and VDE efficiently cleaved its recognition sequence in either context, suggesting that a cold domain is not a region of inaccessible or uncleavable chromosome structure. Importantly, self-association of Spo11 occurred at UAS in a hot domain but not in a cold domain, raising the possibility that Spo11 remains in an inactive intermediate state in cold domains. Integration of UAS adjacent to known DSB hotspots allowed us to detect competitive interactions among hotspots for activation. Moreover, the presence of VDE-introduced DSB repressed proximal hotspot activity, implicating DSBs themselves in interactions among hotspots. Thus, potential sites for Spo11-mediated DSB are subject to domain-specific and local competitive regulations during and after DSB formation.


Assuntos
Cromossomos Fúngicos/química , Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo II/metabolismo , Meiose/genética , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , DNA Topoisomerases Tipo II/genética , DNA Fúngico/química , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA , Endodesoxirribonucleases , ATPases Translocadoras de Prótons/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
18.
Methods Mol Biol ; 557: 285-304, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19799189

RESUMO

Cooperative actions of chromosomal proteins play critical roles in the dynamics, structural transition, segregation, and maintenance of meiotic chromosomes. A high-resolutibn genome-tiling array combined with a chromatin immunoprecipitation assay (ChIP-chip) is a powerful tool for uncovering the precise and dynamic distributions of various proteins along meiotic chromosomes. In this chapter, we describe a method to map the binding sites of meiotic chromosomal proteins such as Spo11, Mre11, and Rec8 using the high-resolution ChIP-chip technology. This system provides us with informative knowledge on the interplay of meiotic chromosomal proteins.


Assuntos
Imunoprecipitação da Cromatina/métodos , Proteínas Cromossômicas não Histona/metabolismo , Mapeamento Cromossômico/métodos , Meiose/genética , Saccharomyces cerevisiae/genética , Algoritmos , Técnicas de Cultura de Células/métodos , Proteínas Cromossômicas não Histona/análise , Genoma Fúngico , Modelos Biológicos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
19.
Nucleic Acids Res ; 35(9): 3109-17, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17452364

RESUMO

The actin-related proteins (Arps) comprise a conserved protein family. Arp4p is found in large multisubunits of the INO80 and SWR1 chromatin remodeling complexes and in the NuA4 histone acetyltransferase complex. Here we show that arp4 (arp4S23A/D159A) temperature-sensitive cells are defective in G2/M phase function. arp4 mutants are sensitive to the microtubule depolymerizing agent benomyl and arrest at G2/M phase at restrictive temperature. Arp4p is associated with centromeric and telomeric regions throughout cell cycle. Ino80p, Esa1p and Swr1p, components of the INO80, NuA4 and SWR1 complexes, respectively, also associate with centromeres. The association of many kinetochore components including Cse4p, a component of the centromere nucleosome, Mtw1p and Ctf3p is partially impaired in arp4 cells, suggesting that the G2/M arrest of arp4 mutant cells is due to a defect in formation of the chromosomal segregation apparatus.


Assuntos
Actinas/fisiologia , Ciclo Celular , Cinetocoros/metabolismo , Proteínas Nucleares/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Actinas/análise , Actinas/genética , Sítios de Ligação , Ciclo Celular/efeitos dos fármacos , Divisão Celular , Fase G2 , Genômica , Mutação , Nocodazol/farmacologia , Proteínas Nucleares/análise , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética
20.
Nat Commun ; 9(1): 1995, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29777105

RESUMO

DNA double-strand break (DSB)-mediated genome rearrangements are assumed to provide diverse raw genetic materials enabling accelerated adaptive evolution; however, it remains unclear about the consequences of massive simultaneous DSB formation in cells and their resulting phenotypic impact. Here, we establish an artificial genome-restructuring technology by conditionally introducing multiple genomic DSBs in vivo using a temperature-dependent endonuclease TaqI. Application in yeast and Arabidopsis thaliana generates strains with phenotypes, including improved ethanol production from xylose at higher temperature and increased plant biomass, that are stably inherited to offspring after multiple passages. High-throughput genome resequencing revealed that these strains harbor diverse rearrangements, including copy number variations, translocations in retrotransposons, and direct end-joinings at TaqI-cleavage sites. Furthermore, large-scale rearrangements occur frequently in diploid yeasts (28.1%) and tetraploid plants (46.3%), whereas haploid yeasts and diploid plants undergo minimal rearrangement. This genome-restructuring system (TAQing system) will enable rapid genome breeding and aid genome-evolution studies.


Assuntos
Arabidopsis/genética , Quebras de DNA de Cadeia Dupla , Genoma Fúngico , Genoma de Planta , Saccharomyces cerevisiae/genética , Arabidopsis/metabolismo , Reparo do DNA , Diploide , Rearranjo Gênico , Instabilidade Genômica , Saccharomyces cerevisiae/metabolismo , Tetraploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA