RESUMO
Due to the increase in bacterial resistance to common antibiotics and the lack of newly approved drugs, antimicrobial peptides (AMP) have been shown to be an alternative to combat infections caused by drug-resistant organisms. In particular, synthetic anti-lipopolysaccharide peptides (SALP) with the lead structure Aspidasept (Pep19-2.5) display a high anti-inflammatory activity in vitro and in vivo systems of endotoxemia and bacteremia. This was found not only when SALP were applied systemically (i.e. against sepsis), but also in topical therapies aimed at treating wound infections. A further important application involves combating common pathologies of the gastrointestinal tract, such as chronic infections of the small intestine and the colon (e.g., Crohn's disease). For the necessary oral application, the active pharmaceutical ingredient (API), Aspidasept®, must be encapsulated to ensure its protection against the low pH and the hydrolytic enzymes of the gastrointestinal tract. Here, the encapsulation of Aspidasept in polysaccharide matrices, essentially alginate and pectin, was systematically investigated with a variety of physico-chemical techniques. Specifically, we characterized key features of the nanoparticles such as their sizes and size distributions, as well as their stability in different environments mimicking digestive fluids. Finally, we studied the release of the drug from the polysaccharide matrices and the ability of nanoparticles to neutralize endotoxemia in vitro. We showed that our lead formulations exert an optimum inhibitory activity on immune cells stimulated by lipopolysaccharide.
Assuntos
Peptídeos , Sepse , Antibacterianos , Anti-Inflamatórios , Humanos , LipopolissacarídeosRESUMO
In previous years, we developed anti-infective drugs based on antimicrobial peptides (AMPs), which have been shown to effectively block severe infections and inflammation in vitro as well as in vivo. Besides systemic application, the occurrence of severe local infections necessitates a topical application for example in the case of severe skin and soft tissue infections (SSTI). Recent investigations show that the synthetic anti-lipopolysaccharide peptide (SALP) Pep19-2.5 (Aspidasept® I) and a variant called Pep19-4LF (Aspidasept® II) are able to supress inflammation reactions also in keratinocytes, Langerhans cells, and dendritic cells from the skin. For topical application, a possible formulation represents the drug dispersed into a pharmaceutical cream (DAC base cream). Here, we present investigations on the stability of the peptides using this formulation in dependence on time, which includes the evaluation of the extraction procedure, the quantitative analysis of the peptides after extraction, its sensitivity to protease degradation and its ability to maintain activity against LPS-induced inflammation in vitro. We have developed an extraction procedure for the peptides with an optimum yield and showed that Pep19-2.5 is present as a dimer after extraction from the cream, whereas Pep19-4LF retains its monomeric form. Both peptides show no degradation by chymotrypsin after extraction for at least 1â¯h, which is indicative for an attachment of constituents of the base cream, inhibiting the cutting into peptidic part structures. The extracted peptides and in particular the dimeric Pep19-2.5 are still able to inhibit the LPS-induced inflammation reaction in human mononuclear cells.