Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Microbiology (Reading) ; 167(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33502310

RESUMO

Biofilm formation in the human intestinal pathogen Vibrio cholerae is in part regulated by norspermidine, spermidine and spermine. V. cholerae senses these polyamines through a signalling pathway consisting of the periplasmic protein, NspS, and the integral membrane c-di-GMP phosphodiesterase MbaA. NspS and MbaA belong to a proposed class of novel signalling systems composed of periplasmic ligand-binding proteins and membrane-bound c-di-GMP phosphodiesterases containing both GGDEF and EAL domains. In this signal transduction pathway, NspS is hypothesized to interact with MbaA in the periplasm to regulate its phosphodiesterase activity. Polyamine binding to NspS likely alters this interaction, leading to the activation or inhibition of biofilm formation depending on the polyamine. The purpose of this study was to determine the amino acids important for NspS function. We performed random mutagenesis of the nspS gene, identified mutant clones deficient in biofilm formation, determined their responsiveness to norspermidine and mapped the location of these residues onto NspS homology models. Single mutants clustered on two lobes of the NspS model, but the majority were found on a single lobe that appeared to be more mobile upon norspermidine binding. We also identified residues in the putative ligand-binding site that may be important for norspermidine binding and interactions with MbaA. Ultimately, our results provide new insights into this novel signalling pathway in V. cholerae and highlight differences between periplasmic binding proteins involved in transport versus signal transduction.


Assuntos
Proteínas de Bactérias/genética , Biofilmes , Vibrio cholerae/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Mutagênese , Periplasma/genética , Periplasma/metabolismo , Domínios Proteicos , Alinhamento de Sequência , Transdução de Sinais , Vibrio cholerae/química , Vibrio cholerae/fisiologia
2.
J Struct Biol ; 210(3): 107506, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32283314

RESUMO

Polyamines are important for regulating biofilms and the exopolysaccharide of the biofilm matrix of Bacillus subtilis. Understanding how enzymes can regulate polyamine concentrations is critical for learning more about how these processes occur in diverse bacteria. Here, we describe the structure and function of another member of the spermidine/spermine acetyltransferases (SSAT) found in Bacilli. The SpeG enzyme from B. thuringiensis (BtSpeG) binds polyamines in its allosteric site and adopts a dodecameric oligomeric state similar to other SpeG enzymes from Gram-negative bacteria. Our kinetic results show the catalytic efficiency of BtSpeG was greater than any previously characterized SpeG to date, and in contrast to other SpeG proteins it exhibited very similar kinetic properties toward both spermine and spermidine. Similar to the SpeG enzyme from E. coli, BtSpeG was able to acetylate spermidine on the N1 and N8 positions. The turnover of BtSpeG toward spermine and spermidine was also two to three orders of magnitude greater than any other Bacilli SSAT enzyme that has been previously characterized. SpeG proteins from Bacilli, including B. cereus, B. thuringiensis and B. anthracis share nearly identical sequences and therefore our results likely provide insight into the structure/function relationship across multiple Bacillus species.


Assuntos
Acetiltransferases/metabolismo , Bacillus thuringiensis/metabolismo , Acetiltransferases/genética , Bacillus thuringiensis/genética , Catálise , Cinética , Poliaminas/metabolismo , Espermidina/metabolismo , Espermina/metabolismo
3.
Biochemistry ; 57(51): 7011-7020, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30499668

RESUMO

Deeper exploration of uncharacterized Gcn5-related N-acetyltransferases has the potential to expand our knowledge of the types of molecules that can be acylated by this important superfamily of enzymes and may offer new opportunities for biotechnological applications. While determining native or biologically relevant in vivo functions of uncharacterized proteins is ideal, their alternative or promiscuous in vitro capabilities provide insight into key active site interactions. Additionally, this knowledge can be exploited to selectively modify complex molecules and reduce byproducts when synthetic routes become challenging. During our exploration of uncharacterized Gcn5-related N-acetyltransferases from Pseudomonas aeruginosa, we identified such an example. We found that the PA3944 enzyme acetylates both polymyxin B and colistin on a single diaminobutyric acid residue closest to the macrocyclic ring of the antimicrobial peptide and determined the PA3944 crystal structure. This finding is important for several reasons. (1) To the best of our knowledge, this is the first report of enzymatic acylation of polymyxins and thus reveals a new type of substrate that this enzyme family can use. (2) The enzymatic acetylation offers a controlled method for antibiotic modification compared to classical promiscuous chemical methods. (3) The site of acetylation would reduce the overall positive charge of the molecule, which is important for reducing nephrotoxic effects and may be a salvage strategy for this important class of antibiotics. While the physiological substrate for this enzyme remains unknown, our structural and functional characterization of PA3944 offers insight into its unique noncanonical substrate specificity.


Assuntos
Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Colistina/metabolismo , Acetiltransferases N-Terminal/metabolismo , Polimixina B/metabolismo , Acetilação , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Genes Bacterianos , Cinética , Modelos Moleculares , Acetiltransferases N-Terminal/química , Acetiltransferases N-Terminal/genética , Conformação Proteica , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Especificidade por Substrato
4.
J Struct Biol ; 202(2): 175-181, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29331609

RESUMO

Many bacteria require l-rhamnose as a key cell wall component. This sugar is transferred to the cell wall using an activated donor dTDP-l-rhamnose, which is produced by the dTDP-l-rhamnose biosynthetic pathway. We determined the crystal structure of the second enzyme of this pathway dTDP-α-d-glucose 4,6-dehydratase (RfbB) from Bacillus anthracis. Interestingly, RfbB only crystallized in the presence of the third enzyme of the pathway RfbC; however, RfbC was not present in the crystal. Our work represents the first complete structural characterization of the four proteins of this pathway in a single Gram-positive bacterium.


Assuntos
Bacillus anthracis/enzimologia , Hidroliases/química , Açúcares de Nucleosídeo Difosfato/química , Conformação Proteica , Nucleotídeos de Timina/química , Bacillus anthracis/patogenicidade , Vias Biossintéticas/genética , Carboidratos Epimerases/química , Cristalografia por Raios X
5.
Biochim Biophys Acta Proteins Proteom ; 1865(1): 55-64, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27783928

RESUMO

Members of the Gcn5-related N-acetyltransferase (GNAT) superfamily catalyze the acetylation of a wide range of small molecule and protein substrates. Due to their abundance in all kingdoms of life and diversity of their functions, they are implicated in many aspects of eukaryotic and prokaryotic physiology. Although numerous GNATs have been identified thus far, many remain structurally and functionally uncharacterized. The elucidation of their structures and functions is critical for broadening our knowledge of this diverse and important superfamily. In this work, we present the structural and kinetic analyses of two previously uncharacterized bacterial acetyltransferases - SACOL1063 from Staphylococcus aureus strain COL and CD1211 from Clostridium difficile strain 630. Our structures of SACOL1063 show substantial flexibility of a loop that is likely responsible for substrate recognition and binding compared to structures of other homologs. In the CoA complex structure, we found two CoA molecules bound in both the canonical AcCoA/CoA-binding site and the acceptor-substrate-binding site. Our work also provides initial clues regarding the substrate specificity of these two enzymes; however, their native function(s) remain unknown. We found both proteins act as N- rather than O-acetyltransferases and preferentially acetylate l-threonine. The combination of structural and kinetic analyses of these two previously uncharacterized GNATs provides fundamental knowledge and a framework on which future studies can be built to elucidate their native functions.


Assuntos
Acetiltransferases/metabolismo , Clostridioides difficile/enzimologia , Staphylococcus aureus/enzimologia , Acetiltransferases/química , Sequência de Aminoácidos , Mutagênese Sítio-Dirigida , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
6.
FASEB J ; 28(4): 1780-93, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24421400

RESUMO

Despite the global medical needs associated with Staphylococcus aureus infections, no licensed vaccines are currently available. We identified and characterized a protein annotated as an epidermin leader peptide processing serine protease (EpiP), as a novel S. aureus vaccine candidate. In addition, we determined the structure of the recombinant protein (rEpiP) by X-ray crystallography. The crystal structure revealed that rEpiP was cleaved somewhere between residues 95 and 100, and we found that the cleavage occurs through an autocatalytic intramolecular mechanism. The protein expressed by S. aureus cells also appeared to undergo a similar processing event. To determine whether the protein acts as a serine protease, we mutated the hypothesized catalytic serine 393 residue to alanine, generating rEpiP-S393A. The crystal structure of this mutant protein showed that the polypeptide chain was not cleaved and was not interacting stably with the active site. Indeed, rEpiP-S393A was shown to be impaired in its protease activity. Mice vaccinated with rEpiP were protected from S. aureus infection (34% survival, P=0.0054). Moreover, the protective efficacy generated by rEpiP and rEpiP-S393A was comparable, implying that the noncleaving mutant could be used for vaccination purposes.


Assuntos
Proteínas de Bactérias/imunologia , Serina Endopeptidases/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Biocatálise , Western Blotting , Domínio Catalítico , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Mutação , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/genética , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Eletricidade Estática
7.
J Biol Chem ; 288(22): 15532-6, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23589282

RESUMO

Stopped-flow kinetic data were obtained for the iron-type nitrile hydratase from Rhodococcus equi TG328-2 (ReNHase) using methacrylonitrile as the substrate. Multiple turnover experiments suggest a three-step kinetic model that allows for the reversible binding of substrate, the presence of an intermediate, and the formation of product. Microscopic rate constants determined from these data are in good agreement with steady state data confirming that the stopped-flow method used was appropriate for the reaction. Single turnover stopped-flow experiments were used to identify catalytic intermediates. These data were globally fit confirming a three-step kinetic model. Independent absorption spectra acquired between 0.005 and 0.5 s of the reaction reveal a significant increase in absorbance at 375, 460, and 550 nm along with the hypsochromic shift of an Fe(3+)←S ligand-to-metal charge transfer band from 700 to 650 nm. The observed UV-visible absorption bands for the Fe(3+)-nitrile intermediate species are similar to low spin Fe(3+)-enzyme and model complexes bound by NO or N3((-)). These data provide spectroscopic evidence for the direct coordination of the nitrile substrate to the nitrile hydratase active site low spin Fe(3+) center.


Assuntos
Proteínas de Bactérias/química , Hidroliases/química , Modelos Químicos , Rhodococcus equi/enzimologia , Proteínas de Bactérias/metabolismo , Catálise , Domínio Catalítico , Hidroliases/metabolismo , Cinética
8.
J Biol Chem ; 288(42): 30223-30235, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24003232

RESUMO

The Gcn5-related N-acetyltransferase (GNAT) superfamily is a large group of evolutionarily related acetyltransferases, with multiple paralogs in organisms from all kingdoms of life. The functionally characterized GNATs have been shown to catalyze the transfer of an acetyl group from acetyl-coenzyme A (Ac-CoA) to the amine of a wide range of substrates, including small molecules and proteins. GNATs are prevalent and implicated in a myriad of aspects of eukaryotic and prokaryotic physiology, but functions of many GNATs remain unknown. In this work, we used a multi-pronged approach of x-ray crystallography and biochemical characterization to elucidate the sequence-structure-function relationship of the GNAT superfamily member PA4794 from Pseudomonas aeruginosa. We determined that PA4794 acetylates the Nε amine of a C-terminal lysine residue of a peptide, suggesting it is a protein acetyltransferase specific for a C-terminal lysine of a substrate protein or proteins. Furthermore, we identified a number of molecules, including cephalosporin antibiotics, which are inhibitors of PA4794 and bind in its substrate-binding site. Often, these molecules mimic the conformation of the acetylated peptide product. We have determined structures of PA4794 in the apo-form, in complexes with Ac-CoA, CoA, several antibiotics and other small molecules, and a ternary complex with the products of the reaction: CoA and acetylated peptide. Also, we analyzed PA4794 mutants to identify residues important for substrate binding and catalysis.


Assuntos
Acetiltransferases , Proteínas de Bactérias , Cefalosporinas/química , Inibidores Enzimáticos/química , Pseudomonas aeruginosa/enzimologia , Acetilcoenzima A , Acetiltransferases/antagonistas & inibidores , Acetiltransferases/química , Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Sítios de Ligação , Cristalografia por Raios X , Lisina/química , Estrutura Terciária de Proteína
9.
J Biol Chem ; 288(15): 10522-35, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23430251

RESUMO

Tularemia is a deadly, febrile disease caused by infection by the gram-negative bacterium, Francisella tularensis. Members of the ubiquitous serine hydrolase protein family are among current targets to treat diverse bacterial infections. Herein we present a structural and functional study of a novel bacterial carboxylesterase (FTT258) from F. tularensis, a homologue of human acyl protein thioesterase (hAPT1). The structure of FTT258 has been determined in multiple forms, and unexpectedly large conformational changes of a peripheral flexible loop occur in the presence of a mechanistic cyclobutanone ligand. The concomitant changes in this hydrophobic loop and the newly exposed hydrophobic substrate binding pocket suggest that the observed structural changes are essential to the biological function and catalytic activity of FTT258. Using diverse substrate libraries, site-directed mutagenesis, and liposome binding assays, we determined the importance of these structural changes to the catalytic activity and membrane binding activity of FTT258. Residues within the newly exposed hydrophobic binding pocket and within the peripheral flexible loop proved essential to the hydrolytic activity of FTT258, indicating that structural rearrangement is required for catalytic activity. Both FTT258 and hAPT1 also showed significant association with liposomes designed to mimic bacterial or human membranes, respectively, even though similar structural rearrangements for hAPT1 have not been reported. The necessity for acyl protein thioesterases to have maximal catalytic activity near the membrane surface suggests that these conformational changes in the protein may dually regulate catalytic activity and membrane association in bacterial and human homologues.


Assuntos
Proteínas de Bactérias/química , Membrana Celular/enzimologia , Francisella tularensis/enzimologia , Serina Endopeptidases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/genética , Francisella tularensis/genética , Humanos , Mutagênese Sítio-Dirigida , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Tioléster Hidrolases/química , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo
10.
Antimicrob Agents Chemother ; 58(12): 7083-92, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25223995

RESUMO

Combinations of group A and B streptogramins (i.e., dalfopristin and quinupristin) are "last-resort" antibiotics for the treatment of infections caused by Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Resistance to streptogramins has arisen via multiple mechanisms, including the deactivation of the group A component by the large family of virginiamycin O-acetyltransferase (Vat) enzymes. Despite the structural elucidation performed for the VatD acetyltransferase, which provided a general molecular framework for activity, a detailed characterization of the essential catalytic and antibiotic substrate-binding determinants in Vat enzymes is still lacking. We have determined the crystal structure of S. aureus VatA in apo, virginiamycin M1- and acetyl-coenzyme A (CoA)-bound forms and provide an extensive mutagenesis and functional analysis of the structural determinants required for catalysis and streptogramin A recognition. Based on an updated genomic survey across the Vat enzyme family, we identified key conserved residues critical for VatA activity that are not part of the O-acetylation catalytic apparatus. Exploiting such constraints of the Vat active site may lead to the development of streptogramin A compounds that evade inactivation by Vat enzymes while retaining binding to their ribosomal target.


Assuntos
Acetiltransferases/química , Antibacterianos/química , Proteínas de Bactérias/química , Estreptogramina A/química , Acetilcoenzima A/química , Acetiltransferases/antagonistas & inibidores , Acetiltransferases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Farmacorresistência Bacteriana/genética , Expressão Gênica , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Positivas/química , Bactérias Gram-Positivas/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência
11.
J Bacteriol ; 195(18): 4174-86, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23852870

RESUMO

Nε-lysine acetylation was recently discovered on many bacterial proteins that function in diverse cellular processes. Thus, many questions remain unanswered. For example, what mechanisms regulate lysine acetylation? Does acetylation affect physiology? To help answer these questions, we studied the Escherichia coli response regulator and transcription factor RcsB, which is reported to be acetylated in vitro. To characterize RcsB acetylation, we monitored transcription from the rprA promoter, which requires RcsB. The conventional view is that RcsB is activated by phosphorylation through either the Rcs phosphorelay or acetyl phosphate. We affirmed that rprA transcription requires phosphorylated RcsB and showed that acetyl-phosphate (AcP) is a phosphoryl group donor to RcsB. However, a mutant that accumulates AcP (ackA) exhibited a reduction in rprA transcription instead of the predicted increase. rprA transcription also diminished in the cobB mutant, which lacks the only known E. coli protein deacetylase. This suggests the existence of an inhibitory mechanism that involves lysine acetylation, a supposition supported by the observation that RcsB isolated from the ackA or cobB mutant was hyperacetylated. Finally, we used a genetic approach to identify an AckA- and CobB-sensitive lysine (Lys-154) that controls RcsB activity. We propose that acetylation inhibits RcsB activity and that some of this inhibition acts through the acetylation of Lys-154.


Assuntos
Acetilação , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas/genética , RNA/genética , Fatores de Transcrição/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Lisina/química , Lisina/metabolismo , Fosforilação , RNA/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética
12.
BMC Evol Biol ; 13: 51, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23433303

RESUMO

BACKGROUND: ADP-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in the synthesis of glycogen in bacteria and starch in algae and plants. In oxygenic photosynthetic organisms, ADP-Glc PPase is mainly activated by 3-phosphoglycerate (3-PGA) and to a lesser extent by other metabolites. In this work, we analyzed the activation promiscuity of ADP-Glc PPase subunits from the cyanobacterium Anabaena PCC 7120, the green alga Ostreococcus tauri, and potato (Solanum tuberosum) tuber by comparing a specificity constant for 3-PGA, fructose-1,6-bisphosphate (FBP), fructose-6-phosphate, and glucose-6-phosphate. RESULTS: The 3-PGA specificity constant for the enzymes from Anabaena (homotetramer), O. tauri, and potato tuber was considerably higher than for other activators. O. tauri and potato tuber enzymes were heterotetramers comprising homologous small and large subunits. Conversely, the O. tauri small subunit (OtaS) homotetramer was more promiscuous because its FBP specificity constant was similar to that for 3-PGA. To explore the role of both OtaS and OtaL (O. tauri large subunit) in determining the specificity of the heterotetramer, we knocked out the catalytic activity of each subunit individually by site-directed mutagenesis. Interestingly, the mutants OtaSD148A/OtaL and OtaS/OtaLD171A had higher specificity constants for 3-PGA than for FBP. CONCLUSIONS: After gene duplication, OtaS seemed to have lost specificity for 3-PGA compared to FBP. This was physiologically and evolutionarily feasible because co-expression of both subunits restored the specificity for 3-PGA of the resulting heterotetrameric wild type enzyme. This widespread promiscuity seems to be ancestral and intrinsic to the enzyme family. Its presence could constitute an efficient evolutionary mechanism to accommodate the ADP-Glc PPase regulation to different metabolic needs.


Assuntos
Anabaena/enzimologia , Clorófitas/enzimologia , Glucose-1-Fosfato Adenililtransferase/metabolismo , Solanum tuberosum/enzimologia , Anabaena/genética , Clorófitas/genética , Frutosedifosfatos/metabolismo , Frutosefosfatos/metabolismo , Duplicação Gênica , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-6-Fosfato/metabolismo , Ácidos Glicéricos/metabolismo , Mutagênese Sítio-Dirigida , Filogenia , Tubérculos/enzimologia , Solanum tuberosum/genética , Especificidade por Substrato
13.
Cells ; 12(14)2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37508494

RESUMO

Polyamines are simple yet critical molecules with diverse roles in numerous pathogenic and non-pathogenic organisms. Regulating polyamine concentrations affects the transcription and translation of genes and proteins important for cell growth, stress, and toxicity. One way polyamine concentrations are maintained within the cell is via spermidine/spermine N-acetyltransferases (SSATs) that acetylate intracellular polyamines so they can be exported. The bacterial SpeG enzyme is an SSAT that exhibits a unique dodecameric structure and allosteric site compared to other SSATs that have been previously characterized. While its overall 3D structure is conserved, its presence and role in different bacterial pathogens are inconsistent. For example, not all bacteria have speG encoded in their genomes; in some bacteria, the speG gene is present but has become silenced, and in other bacteria, it has been acquired on mobile genetic elements. The latter is the case for methicillin-resistant Staphylococcus aureus (MRSA) USA300, where it appears to aid pathogenesis. To gain a greater understanding of the structure/function relationship of SpeG from the MRSA USA300 strain (SaSpeG), we determined its X-ray crystal structure in the presence and absence of spermine. Additionally, we showed the oligomeric state of SaSpeG is dynamic, and its homogeneity is affected by polyamines and AcCoA. Enzyme kinetic assays showed that pre-incubation with polyamines significantly affected the positive cooperativity toward spermine and spermidine and the catalytic efficiency of the enzyme. Furthermore, we showed bacterial SpeG enzymes do not have equivalent capabilities to acetylate aminopropyl versus aminbutyl ends of spermidine. Overall, this study provides new insight that will assist in understanding the SpeG enzyme and its role in pathogenic and non-pathogenic bacteria at a molecular level.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Espermidina , Espermidina/metabolismo , Espermina/metabolismo , Poliaminas/metabolismo , Acetiltransferases/metabolismo
14.
Protein Sci ; 32(8): e4725, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37418656

RESUMO

An increased understanding of how the acceptor site in Gcn5-related N-acetyltransferase (GNAT) enzymes recognizes various substrates provides important clues for GNAT functional annotation and their use as chemical tools. In this study, we explored how the PA3944 enzyme from Pseudomonas aeruginosa recognizes three different acceptor substrates, including aspartame, NANMO, and polymyxin B, and identified acceptor residues that are critical for substrate specificity. To achieve this, we performed a series of molecular docking simulations and tested methods to identify acceptor substrate binding modes that are catalytically relevant. We found that traditional selection of best docking poses by lowest S scores did not reveal acceptor substrate binding modes that were generally close enough to the donor for productive acetylation. Instead, sorting poses based on distance between the acceptor amine nitrogen atom and donor carbonyl carbon atom placed these acceptor substrates near residues that contribute to substrate specificity and catalysis. To assess whether these residues are indeed contributors to substrate specificity, we mutated seven amino acid residues to alanine and determined their kinetic parameters. We identified several residues that improved the apparent affinity and catalytic efficiency of PA3944, especially for NANMO and/or polymyxin B. Additionally, one mutant (R106A) exhibited substrate inhibition toward NANMO, and we propose scenarios for the cause of this inhibition based on additional substrate docking studies with R106A. Ultimately, we propose that this residue is a key gatekeeper between the acceptor and donor sites by restricting and orienting the acceptor substrate within the acceptor site.


Assuntos
Acetiltransferases , Polimixina B , Acetiltransferases/genética , Acetiltransferases/química , Domínio Catalítico , Simulação de Acoplamento Molecular , Especificidade por Substrato , Cinética
15.
J Bacteriol ; 194(22): 6056-65, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22961847

RESUMO

Nitrosomonas europaea is a chemolithoautotroph that obtains energy by oxidizing ammonia in the presence of oxygen and fixes CO(2) via the Benson-Calvin cycle. Despite its environmental and evolutionary importance, very little is known about the regulation and metabolism of glycogen, a source of carbon and energy storage. Here, we cloned and heterologously expressed the genes coding for two major putative enzymes of the glycogen synthetic pathway in N. europaea, ADP-glucose pyrophosphorylase and glycogen synthase. In other bacteria, ADP-glucose pyrophosphorylase catalyzes the regulatory step of the synthetic pathway and glycogen synthase elongates the polymer. In starch synthesis in plants, homologous enzymes play similar roles. We purified to homogeneity the recombinant ADP-glucose pyrophosphorylase from N. europaea and characterized its kinetic, regulatory, and oligomeric properties. The enzyme was allosterically activated by pyruvate, oxaloacetate, and phosphoenolpyruvate and inhibited by AMP. It had a broad thermal and pH stability and used different divalent metal ions as cofactors. Depending on the cofactor, the enzyme was able to accept different nucleotides and sugar phosphates as alternative substrates. However, characterization of the recombinant glycogen synthase showed that only ADP-Glc elongates the polysaccharide, indicating that ATP and glucose-1-phosphate are the physiological substrates of the ADP-glucose pyrophosphorylase. The distinctive properties with respect to selectivity for substrates and activators of the ADP-glucose pyrophosphorylase were in good agreement with the metabolic routes operating in N. europaea, indicating an evolutionary adaptation. These unique properties place the enzyme in a category of its own within the family, highlighting the unique regulation in these organisms.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Glucose-1-Fosfato Adenililtransferase/metabolismo , Glicogênio/metabolismo , Nitrosomonas europaea/enzimologia , Nitrosomonas europaea/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Crescimento Quimioautotrófico , Clonagem Molecular , Estabilidade Enzimática , Regulação Enzimológica da Expressão Gênica , Glucose-1-Fosfato Adenililtransferase/genética , Concentração de Íons de Hidrogênio , Cinética , Metais/metabolismo , Temperatura
16.
Biochemistry ; 51(31): 6148-63, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22788966

RESUMO

Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the first unique step of the GMP branch of the purine nucleotide biosynthetic pathway. This enzyme is found in organisms of all three kingdoms. IMPDH inhibitors have broad clinical applications in cancer treatment, as antiviral drugs and as immunosuppressants, and have also displayed antibiotic activity. We have determined three crystal structures of Bacillus anthracis IMPDH, in a phosphate ion-bound (termed "apo") form and in complex with its substrate, inosine 5'-monophosphate (IMP), and product, xanthosine 5'-monophosphate (XMP). This is the first example of a bacterial IMPDH in more than one state from the same organism. Furthermore, for the first time for a prokaryotic enzyme, the entire active site flap, containing the conserved Arg-Tyr dyad, is clearly visible in the structure of the apoenzyme. Kinetic parameters for the enzymatic reaction were also determined, and the inhibitory effect of XMP and mycophenolic acid (MPA) has been studied. In addition, the inhibitory potential of two known Cryptosporidium parvum IMPDH inhibitors was examined for the B. anthracis enzyme and compared with those of three bacterial IMPDHs from Campylobacter jejuni, Clostridium perfringens, and Vibrio cholerae. The structures contribute to the characterization of the active site and design of inhibitors that specifically target B. anthracis and other microbial IMPDH enzymes.


Assuntos
Bacillus anthracis/enzimologia , IMP Desidrogenase/química , IMP Desidrogenase/metabolismo , Inosina Monofosfato/metabolismo , Ribonucleotídeos/metabolismo , Sequência de Aminoácidos , Apoenzimas/antagonistas & inibidores , Apoenzimas/química , Apoenzimas/metabolismo , Benzimidazóis/química , Benzimidazóis/metabolismo , Benzimidazóis/farmacologia , Domínio Catalítico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , IMP Desidrogenase/antagonistas & inibidores , Modelos Moleculares , Dados de Sequência Molecular , Ácido Micofenólico/metabolismo , NAD/metabolismo , Ligação Proteica , Triazóis/química , Triazóis/metabolismo , Triazóis/farmacologia , Xantina
17.
Biochem Biophys Res Commun ; 424(3): 365-70, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22713452

RESUMO

We report herein the functional expression of an Fe-type nitrile hydratase (NHase) without the co-expression of an activator protein or the Escherichia coli chaperone proteins GroES/EL. Soluble protein was obtained when the α- and ß-subunit genes of the Fe-type NHase Comamonas testosteroni Ni1 (CtNHase) were synthesized with optimized E. coli codon usage and co-expressed. As a control, the Fe-type NHase from Rhodococcus equi TG328-2 (ReNHase) was expressed with (ReNHase(+Act)) and without (ReNHase(-Act)) its activator protein, establishing that expression of a fully functional, metallated ReNHase enzyme requires the co-expression of its activator protein, similar to all other Fe-type NHase enzymes reported to date, whereas the CtNHase does not. The X-ray crystal structure of CtNHase was determined to 2.4Å resolution revealing an αß heterodimer, similar to other Fe-type NHase enzymes, except for two important differences. First, two His residues reside in the CtNHase active site that are not observed in other Fe-type NHase enzymes and second, the active site Fe(III) ion resides at the bottom of a wide solvent exposed channel. The solvent exposed active site, along with the two active site histidine residues, are hypothesized to play a role in iron incorporation in the absence of an activator protein.


Assuntos
Comamonas testosteroni/enzimologia , Hidroliases/biossíntese , Proteínas Recombinantes/biossíntese , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biossíntese , Proteínas de Choque Térmico/biossíntese , Histidina/química , Hidroliases/química , Hidroliases/genética , Ferro/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Rhodococcus equi/enzimologia
18.
Protein Sci ; 30(6): 1264-1269, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826189

RESUMO

The SpeG spermidine/spermine N-acetyltransferase (SSAT) from Escherichia coli belongs to the Gcn5-related N-acetyltransferase (GNAT) superfamily of proteins. In vitro characterization of this enzyme shows it acetylates the polyamines spermine and spermidine, with a preference toward spermine. This enzyme has a conserved tyrosine residue (Y135) that is found in all SSAT proteins and many GNAT functional subfamilies. It is located near acetyl coenzyme A in the active center of these proteins and has been suggested to act as a general acid in a general acid/base chemical mechanism. In contrast, a previous study showed this residue was not critical for E. coli SpeG enzymatic activity when mutated to phenylalanine. This result was quite different from previous studies with a comparable residue in the human and mouse SSAT proteins, which also acetylate spermine and spermidine. Therefore, we constructed several mutants of the E. coli SpeG Y135 residue and tested their enzymatic activity. We found this conserved residue was indeed critical for E. coli SpeG enzyme activity and may behave similarly in other SSAT proteins.


Assuntos
Acetiltransferases/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Acetiltransferases/genética , Animais , Estabilidade Enzimática , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Humanos , Camundongos , Tirosina/química , Tirosina/genética
19.
Front Microbiol ; 12: 805181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35173693

RESUMO

Acetylation is a protein post-translational modification (PTM) that can affect a variety of cellular processes. In bacteria, two PTM Nε-acetylation mechanisms have been identified: non-enzymatic/chemical acetylation via acetyl phosphate or acetyl coenzyme A and enzymatic acetylation via protein acetyltransferases. Prior studies have shown that extensive acetylation of Nε-lysine residues of numerous proteins from a variety of bacteria occurs via non-enzymatic acetylation. In Escherichia coli, new Nε-lysine acetyltransferases (KATs) that enzymatically acetylate other proteins have been identified, thus expanding the repertoire of protein substrates that are potentially regulated by acetylation. Therefore, we designed a study to leverage the wealth of structural data in the Protein Data Bank (PDB) to determine: (1) the 3D location of lysine residues on substrate proteins that are acetylated by E. coli KATs, and (2) investigate whether these residues are conserved on 3D structures of their homologs. Five E. coli KAT substrate proteins that were previously identified as being acetylated by YiaC and had 3D structures in the PDB were selected for further analysis: adenylate kinase (Adk), isocitrate dehydrogenase (Icd), catalase HPII (KatE), methionyl-tRNA formyltransferase (Fmt), and a peroxide stress resistance protein (YaaA). We methodically compared over 350 protein structures of these E. coli enzymes and their homologs; to accurately determine lysine residue conservation requires a strategy that incorporates both flexible structural alignments and visual inspection. Moreover, our results revealed discrepancies in conclusions about lysine residue conservation in homologs when examining linear amino acid sequences compared to 3D structures.

20.
Front Mol Biosci ; 8: 645768, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33928120

RESUMO

Polyamines regulate many important biological processes including gene expression, intracellular signaling, and biofilm formation. Their intracellular concentrations are tightly regulated by polyamine transport systems and biosynthetic and catabolic pathways. Spermidine/spermine N-acetyltransferases (SSATs) are catabolic enzymes that acetylate polyamines and are critical for maintaining intracellular polyamine homeostasis. These enzymes belong to the Gcn5-related N-acetyltransferase (GNAT) superfamily and adopt a highly conserved fold found across all kingdoms of life. SpeG is an SSAT protein found in a variety of bacteria, including the human pathogen Vibrio cholerae. This protein adopts a dodecameric structure and contains an allosteric site, making it unique compared to other SSATs. Currently, we have a limited understanding of the critical structural components of this protein that are required for its allosteric behavior. Therefore, we explored the importance of two key regions of the SpeG protein on its kinetic activity. To achieve this, we created various constructs of the V. cholerae SpeG protein, including point mutations, a deletion, and chimeras with residues from the structurally distinct and non-allosteric human SSAT protein. We measured enzyme kinetic activity toward spermine for ten constructs and crystallized six of them. Ultimately, we identified specific portions of the allosteric loop and the ß6-ß7 structural elements that were critical for enzyme kinetic activity. These results provide a framework for further study of the structure/function relationship of SpeG enzymes from other organisms and clues toward the structural evolution of members of the GNAT family across domains of life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA