Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genome Res ; 25(7): 927-36, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25953952

RESUMO

Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues.


Assuntos
Impressão Genômica , Genômica , Adulto , Alelos , Análise por Conglomerados , Metilação de DNA , Bases de Dados de Ácidos Nucleicos , Feminino , Regulação da Expressão Gênica , Variação Genética , Genótipo , Humanos , Masculino , Especificidade de Órgãos/genética , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Fatores Sexuais
2.
Am J Hum Genet ; 95(3): 245-56, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25192044

RESUMO

Recent and rapid human population growth has led to an excess of rare genetic variants that are expected to contribute to an individual's genetic burden of disease risk. To date, much of the focus has been on rare protein-coding variants, for which potential impact can be estimated from the genetic code, but determining the impact of rare noncoding variants has been more challenging. To improve our understanding of such variants, we combined high-quality genome sequencing and RNA sequencing data from a 17-individual, three-generation family to contrast expression quantitative trait loci (eQTLs) and splicing quantitative trait loci (sQTLs) within this family to eQTLs and sQTLs within a population sample. Using this design, we found that eQTLs and sQTLs with large effects in the family were enriched with rare regulatory and splicing variants (minor allele frequency < 0.01). They were also more likely to influence essential genes and genes involved in complex disease. In addition, we tested the capacity of diverse noncoding annotation to predict the impact of rare noncoding variants. We found that distance to the transcription start site, evolutionary constraint, and epigenetic annotation were considerably more informative for predicting the impact of rare variants than for predicting the impact of common variants. These results highlight that rare noncoding variants are important contributors to individual gene-expression profiles and further demonstrate a significant capability for genomic annotation to predict the impact of rare noncoding variants.


Assuntos
Genoma Humano , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas , RNA não Traduzido/genética , Análise de Sequência de RNA , Transcriptoma , Família , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linfócitos/metabolismo , População Branca/genética
3.
Nat Genet ; 47(5): 544-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25848752

RESUMO

Genomic imprinting is an epigenetic process that restricts gene expression to either the maternally or paternally inherited allele. Many theories have been proposed to explain its evolutionary origin, but understanding has been limited by a paucity of data mapping the breadth and dynamics of imprinting within any organism. We generated an atlas of imprinting spanning 33 mouse and 45 human developmental stages and tissues. Nearly all imprinted genes were imprinted in early development and either retained their parent-of-origin expression in adults or lost it completely. Consistent with an evolutionary signature of parental conflict, imprinted genes were enriched for coexpressed pairs of maternally and paternally expressed genes, showed accelerated expression divergence between human and mouse, and were more highly expressed than their non-imprinted orthologs in other species. Our approach demonstrates a general framework for the discovery of imprinting in any species and sheds light on the causes and consequences of genomic imprinting in mammals.


Assuntos
Impressão Genômica , Animais , Expressão Gênica , Genoma Humano , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA