RESUMO
AIM: Endometriosis is one of the most common gynecologic diseases in women of reproductive age. The pathophysiology of endometriosis is still not fully understood. Phoenixin (PNX-14) is a newly discovered neuropeptide that regulates the hypothalamo-pituitary-gonadal (HPG) axis and reproductive functions. Recently, we reported that PNX-14, its precursor protein and receptor were expressed in human endometrium. Moreover, PNX-14 serum levels in endometriosis were reduced. This study aimed to evaluate the in vitro biological functions of physiological PNX-14 concentrations on the ectopic endometrium Z12 cells. METHODS: The proliferation and migration of Z12 cells were assessed using the xCELLigence® RTCA DP system following 72 h of stimulation with 0.05 and 0.2 nM of PNX-14. GPR173 and small integral membrane protein 20 (SMIM20) gene expression was evaluated using quantitative polymerase chain reaction (qPCR) and the protein levels of GPR173 were analyzed using Western blot analysis. RESULTS: PNX-14 at the concentration observed in the serum of patients with endometriosis (0.05 nM) reduced GPR173 and increased SMIM20 expression, while protein levels of GPR173 remained unchanged. Cell proliferation was increased by the 0.02 nM PNX-14- the concentration found in healthy subjects. The 0.2 nM of PNX-14 decreased SMIM20 expression with no change to GPR173 expression and reduced ectopic epithelial cell proliferation during the first 5 h after stimulation. However, at 72 h, the proliferation increased. CONCLUSIONS: This study shows that PNX-14 at endometriosis specific concentration desensitized ectopic epithelium to PNX-14, and increased the expression of SMIM20 to restore the physiological levels of PNX-14.
Assuntos
Endometriose , Hormônios Hipotalâmicos , Neuropeptídeos , Humanos , Feminino , Células Epiteliais/metabolismo , Proliferação de CélulasRESUMO
The purpose of this work was i) to develop a population pharmacokinetic (PK) and pharmacodynamic (PD) model of dexmedetomidine (DEX) in New Zealand White rabbits, ii) to investigate the influence of the age and weight of the animals on the model parameters, and iii) to assess the linearity of DEX PKs in the examined dose range. This was a prospective, crossover study, using a total of 18 New Zealand White rabbits. DEX was administered as a single intravenous bolus injection in the doses from 25 to 300 µg kg-1 . Each New Zealand White rabbit was given the same dose of drug in its three developmental stages. To determine the DEX PK, seven blood samples were taken from each animal. The pedal withdrawal reflex was the PD response used to assess the degree of sedation. Nonlinear mixed effects modelling was used for the population PK/PD analysis. The typical value of elimination clearance was 0.061 L min-1 and was 35% higher in younger New Zealand White rabbits compared with older animals. The PK of DEX was linear in the examined concentration range. Age-related changes in sensitivity to DEX were not detected. The results suggest that due to the pharmacokinetics, younger animals will have lower DEX concentrations and a shorter duration of sedation than older animals given the same doses of DEX per kg of body weight.
Assuntos
Dexmedetomidina/administração & dosagem , Hipnóticos e Sedativos/administração & dosagem , Modelos Biológicos , Fatores Etários , Animais , Peso Corporal , Estudos Cross-Over , Dexmedetomidina/farmacocinética , Dexmedetomidina/farmacologia , Relação Dose-Resposta a Droga , Hipnóticos e Sedativos/farmacocinética , Hipnóticos e Sedativos/farmacologia , Injeções Intravenosas , Dinâmica não Linear , Estudos Prospectivos , CoelhosRESUMO
Local anesthetics (LAs) are capable of influencing cell viability in systemic immunity and may also modify metabolism of those present in umbilical cord blood (UCB) following obstetric neuraxial analgesia and anaesthesia. Data regarding UCB immature cells, important for the neonate and critical for putative UCB transplantations, are lacking. LAs are capable of stimulating intracellular nitric oxide (NO) in human neutrophils; no information is available concerning newly perpetuated cells and its potential association with viability. The study aimed at assessing the LAs influence on the cell viability and intracellular NO production by UCB CD34+CD133- and CD34+ CD133+ cell populations. Mononuclear cells separated from UCB samples (n = 19) were incubated with bupivacaine (0.0005, 0.005, 1 mM), lidocaine (0.002, 0.02, 4 mM), and ropivacaine (0.0007, 0.007, 1.4 mM) for 4 h. Flow cytometry was applied for the assessment of cell viability and intracellular NO generation in CD34+CD133- and CD34+CD133+ cell populations using annexinV/7-AAD and DAF-2DA stainings, respectively. CD34+CD133+ cells showed less pronounced late apoptosis and necrosis as compared to CD34+CD133-population. Intracellular NO generation was comparable between both cell populations studied. LAs neither influenced cell viability nor changed NO production in either population. LAs do not interfere with viability and intracellular NO generation in the UCB CD34+CD133- and CD34+CD133+ cell populations.
RESUMO
BACKGROUND: Whether local anesthetics exert anti-inflammatory effects in fetal and newborn systemic neutrophils is unclear. The aim of the present study was to assess the effects of bupivacaine and lidocaine on the respiratory burst of cord blood neutrophils in vitro compared with adult cells. METHODS: Whole cord blood (n = 12) and control adult blood samples (n = 7) were incubated with bupivacaine (0.0005, 0.005, 0.05, 1 mmol/l) and lidocaine (0.002, 0.02, 0.2, 4 mmol/l) for 1 and 4 h. The production of reactive oxygen species (ROS) by unstimulated neutrophils and the phorbol myristate acetate-induced oxidative burst were assessed by flow cytometry. A subset of neutrophils showing high fluorescence intensity (rho+) was analyzed separately. RESULTS: After 1 h incubation, local anesthetics decreased the respiratory burst in whole cord blood and adult neutrophils in a similar manner. At the clinically relevant concentration of 0.0005 mmol/l, bupivacaine was active, but its effect in cord blood cells could not be detected after 4 h. The cord blood rho+ cell subset was unresponsive to the inhibitory action of bupivacaine. In rho+ neutrophils, basal ROS production was stimulated by lidocaine at the lowest concentration tested. CONCLUSION: Bupivacaine and lidocaine can decrease the respiratory burst in neutrophils of term newborns.
Assuntos
Anestésicos Locais/farmacologia , Anti-Inflamatórios/farmacologia , Sangue Fetal , Neutrófilos/efeitos dos fármacos , Explosão Respiratória/efeitos dos fármacos , Adulto , Bupivacaína/farmacologia , Estudos de Casos e Controles , Relação Dose-Resposta a Droga , Feminino , Sangue Fetal/citologia , Citometria de Fluxo , Humanos , Lidocaína/farmacologia , Masculino , Neutrófilos/citologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Adulto JovemRESUMO
There are immunological consequences to the method by which neutrophils undergo cell death. Neutrophil apoptosis, called silent death, leads to the resolution of inflammation, while NETosis deepens and prolongs the inflammatory response and is associated with a worse prognosis of severe infections, e.g., sepsis. Besides nociceptive inhibition, local anaesthetics modulate leukocyte functions, even at low, clinically relevant concentrations. There is currently no data on ropivacaine NETosis, and this study aimed to evaluate the impact of clinical concentrations of ropivacaine (0.0007, 0.007 and 1.4 mmol/L) and lidocaine (0.002, 0.02 and 4 mmol/L) on apoptosis and NETosis of adult peripheral blood neutrophils after 2 h of incubation. Neutrophil identification, apoptosis and NETosis were evaluated by flow cytometry using forward and side scatter characteristics and fluorescent labelling: CD15 for neutrophils identification; Annexin V and propidium iodide for apoptosis and citrullinated histone H3 and myeloperoxidase for NETosis. Lidocaine (4 mmol/L) and ropivacaine (1.4 mmol/L) induced early apoptosis in resting but not in stimulated neutrophils. Low doses of ropivacaine (0.0007 and 0.007 mmol/L) decreased the number of late apoptotic neutrophils, and the lowest dose slightly increased their viability. None of the drugs induced NETosis in resting neutrophils but decreased NETosis at clinical concentrations compared to PMA-stimulated 4 mM lidocaine, PMA-stimulated control, and 1.4 mM ropivacaine. The effect of lidocaine and ropivacaine on apoptosis and NETosis depended on neutrophil stimulation and drug concentrations. Ropivacaine tends to be cytoprotective at concentrations observed in plasma under local anaesthesia. Lidocaine enhanced NETosis at high concentration only in stimulated neutrophils. Thus, both drugs have the ability to change the course of inflammation.
RESUMO
PURPOSE: Keratoconus (KTCN) is a non-inflammatory, usually bilateral disorder of the eye which results in the conical shape and the progressive thinning of the cornea. Several studies have suggested that genetic factors play a role in the etiology of the disease. Several loci were previously described as possible candidate regions for familial KTCN; however, no causative mutations in any genes have been identified for any of these loci. The purpose of this study was to evaluate role of the collagen genes collagen type IV, alpha-1 (COL4A1) and collagen type IV, alpha-2 (COL4A2) in KTCN in Ecuadorian families. METHODS: COL4A1 and COL4A2 in 15 Ecuadorian KTCN families were examined with polymerase chain reaction amplification, and direct sequencing of all exons, promoter and intron-exon junctions was performed. RESULTS: Screening of COL4A1 and COL4A2 revealed numerous alterations in coding and non-coding regions of both genes. We detected three missense substitutions in COL4A1: c.19G>C (Val7Leu), c.1663A>C (Thr555Pro), and c.4002A>C (Gln1334His). Five non-synonymous variants were identified in COL4A2: c.574G>T (Val192Phe), c.1550G>A (Arg517Lys), c.2048G>C (Gly683Ala), c.2102A>G (Lys701Arg), and c.2152C>T (Pro718Ser). None of the identified sequence variants completely segregated with the affected phenotype. The Gln1334His variant was possibly damaging to protein function and structure. CONCLUSIONS: This is the first mutation screening of COL4A1 and COL4A2 genes in families with KTCN and linkage to a locus close to these genes. Analysis of COL4A1 and COL4A2 revealed no mutations indicating that other genes are involved in KTCN causation in Ecuadorian families.
Assuntos
Colágeno Tipo IV/genética , Ceratocone/genética , Sequência de Aminoácidos , Estudos de Casos e Controles , Colágeno Tipo IV/análise , Colágeno Tipo IV/biossíntese , Córnea/patologia , Equador , Feminino , Perfilação da Expressão Gênica , Haplótipos , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Análise de Sequência de DNARESUMO
Small integral membrane protein 20/phoenixin (SMIM20/PNX) and its receptor GPR173 (G Protein-Coupled Receptor 173) play a role in the regulation of the hypothalamic-pituitary-gonadal axis (HPG). The aim of the study was to determine PNX, FSH, LH, and 17ß-estradiol association in women with endometriosis, and the expression of SMIM20/PNX signaling via GPR173. Serum PNX, FSH, LH, and 17ß-estradiol concentrations were measured by enzyme and electrochemiluminescence immunoassay. SMIM20/PNX and GPR173 expression in the eutopic and ectopic endometrium was assessed by qPCR and immunohistochemistry. Reduced PNX level, increased LH/FSH ratio and elevated 17ß-estradiol concentration were found in patients with endometriosis. No differences in SMIM20 expression were observed between the studied endometria. GPR173 expression was lower in ectopic than in eutopic endometria. SMIM20 expression was mainly restricted to stroma. GPR173 was detected in some eutopic and ectopic stromal cells and in eutopic glandular epithelial cells. Discriminant analysis indicates the diagnostic relevance of PNX and LH/FSH ratio in patients with endometriosis. In women with endometriosis, reduced PNX levels and GPR173 expression may be responsible for HPG axis dysregulation. These new insights may contribute to a better understanding of the pathophysiology of endometriosis and provide the basis for a new strategy for diagnosis and treatment of endometriosis.
RESUMO
Purpose: Mitochondrial DNA (mtDNA) abnormalities were previously found to be causative in the pathogenesis of various diseases. Here, comprehensive mitochondrial and nuclear sequence and transcript analyses, along with analyses of the methylation aspects of nuclear genes related to mitochondrial function, were performed in patients with keratoconus (KTCN) to evaluate their contribution to the KTCN pathogenesis. Methods: Blood mtDNA of 42 KTCN and 51 non-KTCN individuals was Sanger sequenced and analyzed along with the previously obtained corneal RNA-sequencing data of 20 KTCN and 21 non-KTCN individuals. In addition, the expression and methylation of mtDNA genes and 1223 mitochondria-related nuclear genes were evaluated. Results: The mtDNA sequence alterations detected in blood coincided with variants identified in transcripts of the matched corneal tissues. In KTCN corneas, 97 mitochondria-related genes were deregulated, including TGFB1, P4HB, and BCL2, which are involved in the extracellular matrix (ECM) organization, collagen formation, and focal adhesion pathways. No changes in the expression of mtDNA transcripts and no differentially methylated genes among the assessed mitochondrial-nuclear gene sets were found. Conclusions: The absence of corneal-specific mtDNA variants indicates that there is no direct relationship between mitochondrial sequence variability and KTCN phenotype in the studied individuals. However, the identified KTCN-specific transcriptomic alterations of the nuclear genes directly related to the mitochondria functioning point to their possible involvement in the ECM organization, collagen formation, and focal adhesion. Translational Relevance: The identification of abnormalities within nuclear genes regulating ECM formation, collagen synthesis, and/or focal adhesion may form the basis of future treatment strategies or predict the progression of corneal changes in KTCN.
Assuntos
Ceratocone , Colágeno/genética , Matriz Extracelular/genética , Adesões Focais , Expressão Gênica , Humanos , Ceratocone/genética , Mitocôndrias/genéticaRESUMO
Nitric oxide (NO) generation by systemic neonatal neutrophils is not clarified. It is also not known whether local anaesthetics (LAs) transferred to the fetal systemic circulation following maternal epidural blockade may affect this process. In the present study, NO generation was evaluated in neutrophils from cord blood (CB, n = 11) and adult blood (n = 10) following exposure to bupivacaine (0.0005, 0.005, 1 mM), lidocaine (0.002, 0.02, 4 mM) and ropivacaine (0.0007, 0.007, 1.4 mM) using flow cytometry, as well as indirectly by determining nitrite concentrations in cell incubation media. To determine the role of NO synthase (NOS) isoforms in NO generation following exposure to LAs, experiments were repeated in the presence of the NOS inhibitors, NG-nitro-L-arginine methyl ester and aminoguanidine; in addition, the expression of NOS isoforms was analysed. CB neutrophils produced less NO than adult neutrophils. LAs, especially ropivacaine and lidocaine, stimulated neutrophil NO generation, but in CB neutrophils this effect was negligible at clinically relevant drug concentrations. A mechanism involving NOS activity was responsible for the observed phenomena. In conclusion, LAs are able to upregulate neutrophil NO production, but in neonates this effect is likely to be clinically insignificant.