Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 625(7994): 253-258, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200292

RESUMO

Neutron stars and stellar-mass black holes are the remnants of massive star explosions1. Most massive stars reside in close binary systems2, and the interplay between the companion star and the newly formed compact object has been theoretically explored3, but signatures for binarity or evidence for the formation of a compact object during a supernova explosion are still lacking. Here we report a stripped-envelope supernova, SN 2022jli, which shows 12.4-day periodic undulations during the declining light curve. Narrow Hα emission is detected in late-time spectra with concordant periodic velocity shifts, probably arising from hydrogen gas stripped from a companion and accreted onto the compact remnant. A new Fermi-LAT γ-ray source is temporally and positionally consistent with SN 2022jli. The observed properties of SN 2022jli, including periodic undulations in the optical light curve, coherent Hα emission shifting and evidence for association with a γ-ray source, point to the explosion of a massive star in a binary system leaving behind a bound compact remnant. Mass accretion from the companion star onto the compact object powers the light curve of the supernova and generates the γ-ray emission.

2.
Nature ; 623(7989): 927-931, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968403

RESUMO

In recent years, certain luminous extragalactic optical transients have been observed to last only a few days1. Their short observed duration implies a different powering mechanism from the most common luminous extragalactic transients (supernovae), whose timescale is weeks2. Some short-duration transients, most notably AT2018cow (ref. 3), show blue optical colours and bright radio and X-ray emission4. Several AT2018cow-like transients have shown hints of a long-lived embedded energy source5, such as X-ray variability6,7, prolonged ultraviolet emission8, a tentative X-ray quasiperiodic oscillation9,10 and large energies coupled to fast (but subrelativistic) radio-emitting ejecta11,12. Here we report observations of minutes-duration optical flares in the aftermath of an AT2018cow-like transient, AT2022tsd (the 'Tasmanian Devil'). The flares occur over a period of months, are highly energetic and are probably nonthermal, implying that they arise from a near-relativistic outflow or jet. Our observations confirm that, in some AT2018cow-like transients, the embedded energy source is a compact object, either a magnetar or an accreting black hole.

3.
Nature ; 528(7580): 108-10, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26605521

RESUMO

The formation of relativistic jets by an accreting compact object is one of the fundamental mysteries of astrophysics. Although the theory is poorly understood, observations of relativistic jets from systems known as microquasars (compact binary stars) have led to a well established phenomenology. Relativistic jets are not expected to be produced by sources with soft or supersoft X-ray spectra, although two such systems are known to produce relatively low-velocity bipolar outflows. Here we report the optical spectra of an ultraluminous supersoft X-ray source (ULS) in the nearby galaxy M81 (M81 ULS-1; refs 9, 10). Unexpectedly, the spectra show blueshifted, broad Hα emission lines, characteristic of baryonic jets with relativistic speeds. These time-variable emission lines have projected velocities of about 17 per cent of the speed of light, and seem to be similar to those from the prototype microquasar SS 433 (refs 11, 12). Such relativistic jets are not expected to be launched from white dwarfs, and an origin from a black hole or a neutron star is hard to reconcile with the persistence of M81 ULS-1's soft X-rays. Thus the unexpected presence of relativistic jets in a ULS challenges canonical theories of jet formation, but might be explained by a long-speculated, supercritically accreting black hole with optically thick outflows.

4.
Nature ; 446(7132): 159-62, 2007 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-17344847

RESUMO

Cataclysmic variables (classical novae and dwarf novae) are binary star systems in which a red dwarf transfers hydrogen-rich matter, by way of an accretion disk, to its white dwarf companion. In dwarf novae, an instability is believed to episodically dump much of the accretion disk onto the white dwarf. The liberation of gravitational potential energy then brightens these systems by up to 100-fold every few weeks or months. Thermonuclear-powered eruptions thousands of times more luminous occur in classical novae, accompanied by significant mass ejection and formation of clearly visible shells from the ejected material. Theory predicts that the white dwarfs in all dwarf novae must eventually accrete enough mass to undergo classical nova eruptions. Here we report a shell, an order of magnitude more extended than those detected around many classical novae, surrounding the prototypical dwarf nova Z Camelopardalis. The derived shell mass matches that of classical novae, and is inconsistent with the mass expected from a dwarf nova wind or a planetary nebula. The shell observationally links the prototypical dwarf nova Z Camelopardalis with an ancient nova eruption and the classical nova process.

5.
Nat Astron ; 7(9): 1098-1107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37736027

RESUMO

Detecting gravitationally lensed supernovae is among the biggest challenges in astronomy. It involves a combination of two very rare phenomena: catching the transient signal of a stellar explosion in a distant galaxy and observing it through a nearly perfectly aligned foreground galaxy that deflects light towards the observer. Here we describe how high-cadence optical observations with the Zwicky Transient Facility, with its unparalleled large field of view, led to the detection of a multiply imaged type Ia supernova, SN Zwicky, also known as SN 2022qmx. Magnified nearly 25-fold, the system was found thanks to the standard candle nature of type Ia supernovae. High-spatial-resolution imaging with the Keck telescope resolved four images of the supernova with very small angular separation, corresponding to an Einstein radius of only θE = 0.167″ and almost identical arrival times. The small θE and faintness of the lensing galaxy are very unusual, highlighting the importance of supernovae to fully characterize the properties of galaxy-scale gravitational lenses, including the impact of galaxy substructures.

6.
Nature ; 419(6903): 121-3, 2002 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-12226646
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA