Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 31(24): 8948-57, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21677178

RESUMO

Serotonin [5-hydroxytryptamine (5-HT)]-absorbing neurons use serotonin reuptake transporter (SERT) to uptake 5-HT from extracellular space but do not synthesize it. While 5-HT-absorbing neurons have been identified in diverse organisms from Caenorhabditis elegans to humans, their function has not been elucidated. Here, we show that SERT in 5-HT-absorbing neurons controls behavioral response to food deprivation in C. elegans. The AIM and RIH interneurons uptake 5-HT released from chemosensory neurons and secretory neurons. Genetic analyses suggest that 5-HT secreted by both synaptic vesicles and dense core vesicles diffuse readily to the extrasynaptic space adjacent to the AIM and RIH neurons. Loss of mod-5/SERT function blocks the 5-HT absorption. mod-5/SERT mutants have been shown to exhibit exaggerated locomotor response to food deprivation. We found that transgenic expression of MOD-5/SERT in the 5-HT-absorbing neurons fully corrected the exaggerated behavior. Experiments of cell-specific inhibition of synaptic transmission suggest that the synaptic release of 5-HT from the 5-HT-absorbing neurons is not required for this behavioral modulation. Our data point to the role of 5-HT-absorbing neurons as temporal-spatial regulators of extrasynaptic 5-HT. Regulation of extrasynaptic 5-HT levels by 5-HT-absorbing neurons may represent a fundamental mechanism of 5-HT homeostasis, integrating the activity of 5-HT-producing neurons with distant targets in the neural circuits, and could be relevant to some actions of selective serotonin reuptake inhibitors in humans.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Regulação da Expressão Gênica/fisiologia , Neurônios/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/fisiologia , Serotonina/metabolismo , Adaptação Fisiológica/genética , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Modelos Biológicos , Mutação/genética , Proteínas do Tecido Nervoso/genética , Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Triptofano Hidroxilase/farmacologia , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
2.
Nucleic Acids Res ; 36(22): 7019-28, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18987002

RESUMO

Insulators are defined as a class of regulatory elements that delimit independent transcriptional domains within eukaryotic genomes. According to previous data, an interaction (pairing) between some Drosophila insulators can support distant activation of a promoter by an enhancer. Here, we have demonstrated that pairs of well-studied insulators such as scs-scs, scs'-scs', 1A2-1A2 and Wari-Wari support distant activation of the white promoter by the yeast GAL4 activator in an orientation-dependent manner. The same is true for the efficiency of the enhancer that stimulates white expression in the eyes. In all insulator pairs tested, stimulation of the white gene was stronger when insulators were inserted between the eye enhancer or GAL4 and the white promoter in opposite orientations relative to each other. As shown previously, Zw5, Su(Hw) and dCTCF proteins are required for the functioning of different insulators that do not interact with each other. Here, strong functional interactions have been revealed between DNA fragments containing binding sites for either Zw5 or Su(Hw) or dCTCF protein but not between heterologous binding sites [Zw5-Su(Hw), dCTCF-Su(Hw), or dCTCF-Zw5]. These results suggest that insulator proteins can support selective interactions between distant regulatory elements.


Assuntos
Drosophila/genética , Elementos Isolantes , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Elementos Facilitadores Genéticos , Proteínas do Olho/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
3.
Mol Cell Biol ; 25(9): 3682-9, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15831473

RESUMO

Chromatin insulators, or boundary elements, appear to control eukaryotic gene expression by regulating interactions between enhancers and promoters. Boundaries have been identified in the 3' cis-regulatory region of Abd-B, which is subdivided into a series of separate iab domains. Boundary elements such as Mcp, Fab-7, and Fab-8 and adjacent silencers flank the iab domains and restrict the activity of the iab enhancers. We have identified an insulator in the 755-bp Mcp fragment that is linked to the previously characterized Polycomb response element (PRE) and silences the adjacent genes. This insulator blocks the enhancers of the yellow and white genes and protects them from PRE-mediated repression. The interaction between the Mcp elements, each containing the insulator and PRE, allows the eye enhancer to activate the white promoter over the repressed yellow domain. The same level of white activation was observed when the Mcp element combined with the insulator alone was interposed between the eye enhancer and the promoter, suggesting that the insulator is responsible for the interaction between the Mcp elements.


Assuntos
Drosophila/genética , Elementos Facilitadores Genéticos/fisiologia , Elementos Isolantes/fisiologia , Regiões Promotoras Genéticas/fisiologia , Elementos de Resposta/genética , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Elementos Facilitadores Genéticos/genética , Olho/anatomia & histologia , Proteínas do Olho/genética , Genes de Insetos/genética , Elementos Isolantes/genética , Fenótipo , Regiões Promotoras Genéticas/genética
4.
PLoS One ; 5(4): e10368, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20442779

RESUMO

The C. elegans eat-6 gene encodes a Na(+), K(+)-ATPase alpha subunit and is a homolog of the familial hemiplegic migraine candidate gene FHM2. Migraine is the most common neurological disorder linked to serotonergic dysfunction. We sought to study the pathophysiological mechanisms of migraine and their relation to serotonin (5-HT) signaling using C. elegans as a genetic model. In C. elegans, exogenous 5-HT inhibits paralysis induced by the acetylcholinesterase inhibitor aldicarb. We found that the eat-6(ad467) mutation or RNAi of eat-6 increases aldicarb sensitivity and causes complete resistance to 5-HT treatment, indicating that EAT-6 is a component of the pathway that couples 5-HT signaling and ACh neurotransmission. While a postsynaptic role of EAT-6 at the bodywall NMJs has been well established, we found that EAT-6 may in addition regulate presynaptic ACh neurotransmission. We show that eat-6 is expressed in ventral cord ACh motor neurons, and that cell-specific RNAi of eat-6 in the ACh neurons leads to hypersensitivity to aldicarb. Electron microscopy showed an increased number of synaptic vesicles in the ACh neurons in the eat-6(ad467) mutant. Genetic analyses suggest that EAT-6 interacts with EGL-30 Galphaq, EGL-8 phospholipase C and SLO-1 BK channel signaling to modulate ACh neurotransmission and that either reduced or excessive EAT-6 function may lead to increased ACh neurotransmission. Study of the interaction between eat-6 and 5-HT receptors revealed both stimulatory and inhibitory 5-HT inputs to the NMJs. We show that the inhibitory and stimulatory 5-HT signals arise from distinct 5-HT neurons. The role of eat-6 in modulation of excitatory neurotransmission by 5-HT may provide a genetic explanation for the therapeutic effects of the drugs targeting 5-HT receptors in the treatment of migraine patients.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Serotonina/farmacologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Acetilcolina , Animais , Humanos , Enxaqueca com Aura , Modelos Animais , Receptores de Serotonina
5.
Genetics ; 186(3): 929-41, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20739712

RESUMO

Fluoxetine is one of the most commonly prescribed medications for many behavioral and neurological disorders. Fluoxetine acts primarily as an inhibitor of the serotonin reuptake transporter (SERT) to block the removal of serotonin from the synaptic cleft, thereby enhancing serotonin signals. While the effects of fluoxetine on behavior are firmly established, debate is ongoing whether inhibition of serotonin reuptake is a sufficient explanation for its therapeutic action. Here, we provide evidence of two additional aspects of fluoxetine action through genetic analyses in Caenorhabditis elegans. We show that fluoxetine treatment and null mutation in the sole SERT gene mod-5 eliminate serotonin in specific neurons. These neurons do not synthesize serotonin but import extracellular serotonin via MOD-5/SERT. Furthermore, we show that fluoxetine acts independently of MOD-5/SERT to regulate discrete properties of acetylcholine (Ach), gamma-aminobutyric acid (GABA), and glutamate neurotransmission in the locomotory circuit. We identified that two G-protein-coupled 5-HT receptors, SER-7 and SER-5, antagonistically regulate the effects of fluoxetine and that fluoxetine binds to SER-7. Epistatic analyses suggest that SER-7 and SER-5 act upstream of AMPA receptor GLR-1 signaling. Our work provides genetic evidence that fluoxetine may influence neuronal functions and behavior by directly targeting serotonin receptors.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Fluoxetina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Acetilcolina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Bioensaio , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fluoxetina/metabolismo , Ácido Glutâmico/metabolismo , Relaxamento Muscular/efeitos dos fármacos , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA