Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 62(48): 19664-19676, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37967464

RESUMO

The uranyl ion (UO2)2+, a uranium nuclear waste, is one of the serious contaminants in our ecosystem because of its radioactivity, relevant human activities, and highly mobile and complex nature of living cells. In this article, we have reported the synthesis and structural characterization of an uranyl cation-incorporated polyoxometalate (POM) compound, K10[{K4(H2O)6}{UO2}2(α-PW9O34)2]·13H2O (1), in which the uranyl cations are complexed with an in situ generated [α-PW9O34]9- cluster. Single-crystal X-ray diffraction (SCXRD) analysis of compound 1 reveals that the uranyl-potassium complex cationic species, [{K4(H2O)6}{UO2}2]8+, is sandwiched by two [α-PW9O34]9- clusters resulting in a Dawson type of POM. Compound 1 was further characterized by inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis and infrared (IR), Raman, electronic absorption, and solid-state photoluminescence spectral studies. IR stretching vibrations at 895 and 856 cm-1 and the Raman signature peak at 792 cm-1 in the IR and Raman spectra of compound 1 primarily confirm the presence of a trans-[O═U═O]2+ ion. The solid-state photoluminescence spectrum of 1 exhibits a typical vibronic structure, resulting from symmetrical vibrations of [O═U═O]2+ bands, corresponding to the electronic transitions of S11 → S10 and S10 → S0υ (υ = 0-3). Interestingly, title compound 1 shows efficient electrocatalytic hydrogen evolution by water reduction with low Tafel slope values of 186.59 and 114.83 mV dec-1 at 1 mA cm-2 along with optimal Faradaic efficiency values of 82 and 87% at neutral pH and in acidic pH 3, respectively. Detailed electrochemical analyses reveal that the catalytic hydrogen evolution reaction (HER) activity mediated by compound 1 is associated with the UVI/UV redox couple of the POM. The microscopic as well as routine spectral analyses of postelectrode samples and controlled experiments have confirmed that compound 1 behaves like a true molecular electrocatalyst for the HER. To our knowledge, this is the first paradigm of a uranium-containing polyoxometalate that exhibits electrocatalytic water reduction to molecular H2. In a nutshell, an environmental toxin (a uranium-oxo compound) has been demonstrated to be utilized as an efficient electrocatalyst for hydrogen generation from water, a green approach of sustainable energy production.

2.
Angew Chem Int Ed Engl ; 61(48): e202212382, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36178425

RESUMO

We report the construction of an organic crystal multiplexer using three chemically and optically different acicular, flexible organic crystals for a broadband, visible light signal transportation. The mechanical integration of a highly flexible crystal waveguide of (Z)-2-(3,5-bis(trifluoromethyl)phenyl)-3-(7-methoxybenzo[c][1,2,5]thiadiazol-4-yl)acrylonitrile (BTD2CF3 ) displaying bright yellow (λ1 ) fluorescence with blue-emitting (λ2 ) BPP and cyan emitting (λ3 ) DBA crystals using AFM-tip provides a composite organic crystal multiplexer. The constructed hybrid single crystal multiplexer effectively transduces three optical signals (λ1 +λ2 +λ3 ) covering the 420-750 nm region as a composite output signal. The presented proof-of-principle experiment demonstrates the real potential of organic flexible crystal waveguides for visible light communication technologies.

3.
Angew Chem Int Ed Engl ; 61(21): e202202114, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35278020

RESUMO

We demonstrate mechanically-powered rolling locomotion of a twisted-microcrystal optical-waveguide cavity on the substrate, rotating the output signal's linear-polarization. Self-assembly of (E)-2-bromo-6-(((4-methoxyphenyl)imino)methyl)-4-nitrophenol produces naturally twisted microcrystals. The strain between several intergrowing, orientationally mismatched nanocrystalline fibres dictates the pitch lengths of the twisted crystals. The crystals are flexible, perpendicular to twisted (001) and (010) planes due to π⋅⋅⋅π stacking, C-H⋅⋅⋅Br, N-H⋅⋅⋅O and C-H⋅⋅⋅O interactions. The twisted crystals in their straight and bent geometries guide fluorescence along their body axes and display optical modes. Depending upon the degree of mechanical rolling locomotion, the crystal-waveguide cavity correspondingly rotates the output signal polarization. The presented twisted-crystal cavity with a combination of mechanical locomotion and photonic attributes unfolds a new dimension in mechanophotonics.

4.
Nanoscale Adv ; 2(12): 5584-5590, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36133889

RESUMO

The advancement of nanoscience and technology relies on the development and utility of innovative techniques. Precise manipulation of photonic microcavities is one of the fundamental challenges in nanophotonics. This challenge impedes the construction of optoelectronic and photonic microcircuits. As a proof-of-principle, we demonstrate here that an atomic force microscopy cantilever and confocal microscopy can be used together to mechanically micromanipulate polymer-based whispering gallery mode microcavities or microresonators into well-ordered geometries. The micromanipulation technique efficiently assembles or disassembles resonators and also produces well-ordered dimer, trimer, tetramer, and pentamer assemblies of resonators in linear and bent geometries. Interestingly, an intricate L-shaped coupled-resonator optical waveguide (CROW) comprising a pentamer assembly effectively transduces light through a 90° bend angle. The presented new research direction, which combines mechanical manipulation and nanophotonics, is also expected to open up a plethora of opportunities in nano and microstructure-based research areas including nanoelectronics and nanobiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA