Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 934: 173039, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38735325

RESUMO

The extensive emissions of black carbon (BC) from the Indo-Gangetic Plain (IGP) region of India have been well recognized. Particularly, biomass emissions from month-specific crop-residue burning (April, May, October, November) and heating activities (December-February) are considered substantial contributors to BC emissions in the IGP. However, their precise contribution to ambient BC aerosol has not been quantified yet and remains an issue of debate. Therefore, this study aims to fill this gap by quantifying the contribution of these month-specific biomass emissions to ambient BC at an urban site in IGP. This study presents the analysis of BC mass concentrations (MBC) measured for 3 years (2020-2022) in Delhi using an optical photometer i.e., continuous soot monitoring system (COSMOS). A statistical analysis of monthly mean MBC and factors affecting the MBC (ventilation coefficients, air mass back trajectories, fire counts) is performed to derive month-wise contribution due to background concentration, conventional emission, regional transport, crop-residue burning, and heating activities. The yearly mean MBC (5.3 ± 4.7, 5.6 ± 5.0, and 5.3 ± 3.5 µg m-3 during 2020, 2021, and 2022, respectively) remained relatively consistent with repetitive monthly patterns in each year. The peak concentrations were observed from November to January and low concentrations from June to September. Anthropogenic activities contributed significantly to MBC over Delhi with background concentration contributing only 30 % of observed MBC. The percentage contribution of emissions from crop-residue burning varied from 15 % (May) to 37 % (November), while the contribution from heating activities ranged from 25 % (December) to 39 % (January). This source quantification study highlights the significant impact of month-specific biomass emissions in the IGP and can play a vital role in better management and control of these emissions in the region.

2.
J Hazard Mater ; 328: 117-126, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28103487

RESUMO

Carbon quantum dots (CQDs) have emerged out as promising fluorescent probes for hazardous heavy metals detection in recent past. In this study, water soluble CQDs were synthesized by facile microwave pyrolysis of citric acid & cysteamine, and functionalized with ditheritheritol to impart thiol functionalities at surface for selective detection of toxic arsenite in water. Microscopic analysis reveals that the synthesized CQDs are of uniform size (diameter ∼5nm) and confirmed to have surface SH groups by FT-IR. The functionalized probe is then demonstrated for arsenite detection in water by "Turn-On" read out mechanism, which reduces the possibility of false positive signals associated with "turn off' probes reported earlier. The blue luminescent functionalized CQDs exhibit increase in fluorescence intensity on arsenite addition in 5-100ppb wide detection range. The probe can be used for sensitive detection of arsenite in environmental water to a theoretical detection limit (3s) of 0.086ppb (R2=0.9547) with good reproducibility at 2.6% relative standard deviation. The presented reliable, sensitive, rapid fCQDs probe demonstrated to exhibit high selectivity towards arsenite and exemplified for real water samples as well. The analytical performance of the presented probe is comparable to existing organic & semiconductor based optical probes.

3.
Sci Rep ; 6: 35535, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27759052

RESUMO

Highly water dispersible boron based compounds are innovative and advanced materials which can be used in Boron Neutron Capture Therapy for cancer treatment (BNCT). Present study deals with the synthesis of highly water dispersible nanostructured Boron Nitride (BN). Unique and relatively low temperature synthesis route is the soul of present study. The morphological examinations (Scanning/transmission electron microscopy) of synthesized nanostructures showed that they are in transient phase from two dimensional hexagonal sheets to nanotubes. It is also supported by dual energy band gap of these materials calculated from UV- visible spectrum of the material. The theoretically calculated band gap also supports the same (calculated by virtual nano lab Software). X-ray diffraction (XRD) analysis shows that the synthesized material has deformed structure which is further supported by Raman spectroscopy. The structural aspect of high water disperse ability of BN is also studied. The ultra-high disperse ability which is a result of structural deformation make these nanostructures very useful in BNCT. Cytotoxicity studies on various cell lines (Hela(cervical cancer), human embryonic kidney (HEK-293) and human breast adenocarcinoma (MCF-7)) show that the synthesized nanostructures can be used for BNCT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA