Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(44): e2121273119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36306327

RESUMO

Axon regeneration is an energy-demanding process that requires active mitochondrial transport. In contrast to the central nervous system (CNS), axonal mitochondrial transport in regenerating axons of the peripheral nervous system (PNS) increases within hours and sustains for weeks after injury. Yet, little is known about targeting mitochondria in nervous system repair. Here, we report the induction of sustained axon regeneration, neural activities in the superior colliculus (SC), and visual function recovery after optic nerve crush (ONC) by M1, a small molecule that promotes mitochondrial fusion and transport. We demonstrated that M1 enhanced mitochondrial dynamics in cultured neurons and accelerated in vivo axon regeneration in the PNS. Ex vivo time-lapse imaging and kymograph analysis showed that M1 greatly increased mitochondrial length, axonal mitochondrial motility, and transport velocity in peripheral axons of the sciatic nerves. Following ONC, M1 increased the number of axons regenerating through the optic chiasm into multiple subcortical areas and promoted the recovery of local field potentials in the SC after optogenetic stimulation of retinal ganglion cells, resulting in complete recovery of the pupillary light reflex, and restoration of the response to looming visual stimuli was detected. M1 increased the gene expression of mitochondrial fusion proteins and major axonal transport machinery in both the PNS and CNS neurons without inducing inflammatory responses. The knockdown of two key mitochondrial genes, Opa1 or Mfn2, abolished the growth-promoting effects of M1 after ONC, suggesting that maintaining a highly dynamic mitochondrial population in axons is required for successful CNS axon regeneration.


Assuntos
Axônios , Traumatismos do Nervo Óptico , Humanos , Axônios/metabolismo , Proteínas Mitocondriais/metabolismo , Compressão Nervosa , Regeneração Nervosa/fisiologia , Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/fisiologia , Nervo Isquiático/metabolismo , Bibliotecas de Moléculas Pequenas
2.
Brain Behav Immun ; 115: 43-63, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37774892

RESUMO

Traumatic brain injury (TBI) and stroke share a common pathophysiology that worsens over time due to secondary tissue injury caused by sustained inflammatory response. However, studies on pharmacological interventions targeting the complex secondary injury cascade have failed to show efficacy. Here, we demonstrated that low-dose ionizing radiation (LDIR) reduced lesion size and reversed motor deficits after TBI and photothrombotic stroke. Magnetic resonance imaging demonstrated significant reduction of infarct volume in LDIR-treated mice after stroke. Systems-level transcriptomic analysis showed that genes upregulated in LDIR-treated stoke mice were enriched in pathways associated with inflammatory and immune response involving microglia. LDIR induced upregulation of anti-inflammatory- and phagocytosis-related genes, and downregulation of key pro-inflammatory cytokine production. These findings were validated by live-cell assays, in which microglia exhibited higher chemotactic and phagocytic capacities after LDIR. We observed substantial microglial clustering at the injury site, glial scar clearance and reversal of motor deficits after stroke. Cortical microglia/macrophages depletion completely abolished the beneficial effect of LDIR on motor function recovery in stroke mice. LDIR promoted axonal projections (brain rewiring) in motor cortex and recovery of brain activity detected by electroencephalography recordings months after stroke. LDIR treatment delayed by 8 h post-injury still maintained full therapeutic effects on motor recovery, indicating that LDIR is a promising therapeutic strategy for TBI and stroke.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Acidente Vascular Cerebral , Camundongos , Animais , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Acidente Vascular Cerebral/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Microglia/metabolismo , Radiação Ionizante , Camundongos Endogâmicos C57BL
3.
Int J Med Sci ; 21(1): 151-168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164351

RESUMO

Background: Ischemic stroke is a common cerebrovascular accident with a high risk of neurological deficits. Stem cell therapy has progressively attracted the interest of scientists and clinicians due to the benefits of promoting neural regeneration and regulating the microenvironment surrounding the lesion after ischemic stroke. Our study aimed to evaluate the development trends and research hotspots in the field of stem cells and ischemic stroke. Materials and methods: Publications related to stem cells and ischemic stroke were retrieved from the Web of Science from 2001 to 2022. Data analysis and mapping were performed using VOSviewer, Citespace and ImageGP. Results: In total, 1932 papers were included in the analysis. Publications have steadily increased over the past 22 years. China has contributed the maximum number of publications, whereas the USA ranked first in the total number of citations and was considered the center of the international collaboration network. University of South Florida, Henry Ford Hospital, and Oakland University were the most influential institutions. Stroke, Brain Research, and Neural Regeneration Research were the most productive journals. The research in this field was primarily focused on the effects of stem cells on neurogenesis, inflammation, and angiogenesis following ischemic stroke, as well as their therapeutic potential for the disease. In addition, neural stem cells and mesenchymal stem cells are the most commonly utilized stem cells. The topics related to miRNA, extracellular vesicles, exosomes, mesenchymal stem cells, neuroinflammation, and autophagy are current research hotspots. Conclusion: Our bibliometric study provides a novel perspective on the research trends in the field of stem cells and ischemic stroke. The outcome of this study may benefit scientists to identify research hotspots and development directions, thereby advancing the application of stem cell-based therapy for ischemic stroke.


Assuntos
AVC Isquêmico , MicroRNAs , Células-Tronco Neurais , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/terapia , Bibliometria
4.
Metab Brain Dis ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088109

RESUMO

Alzheimer's disease (AD) is characterized by cognitive decline stemming from the accumulation of beta-amyloid (Aß) plaques and the propagation of tau pathology through synapses. Exosomes, crucial mediators in neuronal development, maintenance, and intercellular communication, have gained attention in AD research. Yet, the molecular mechanisms involving exosomal miRNAs in AD remain elusive. In this study, we treated APPswe/PSEN1dE9 transgenic (APP/PS1) mice, a model for AD, with either vehicle (ADNS) or fasudil (ADF), while C57BL/6 (control) mice received vehicle (WT). Cognitive function was evaluated using the Y-maze test, and AD pathology was confirmed through immunostaining and western blot analysis of Aß plaques and phosphorylated tau. Exosomal RNAs were extracted, sequenced, and analyzed from each mouse group. Our findings revealed that fasudil treatment improved cognitive function in AD mice, as evidenced by increased spontaneous alternation in the Y-maze test and reduced Aß plaque load and phosphorylated tau protein expression in the hippocampus. Analysis of exosomal miRNAs identified three miRNAs (mmu-let-7i-5p, mmu-miR-19a-3p, mmu-miR-451a) common to both ADNS vs ADF and WT vs ADNS groups. Utilizing miRTarBase software, we predicted and analyzed target genes associated with these miRNAs. Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of miRNA target genes indicated that mmu-miR-19a-3p and mmu-miR-451a are implicated in signal transduction, immune response, cellular communication, and nervous system pathways. Specifically, mmu-miR-19a-3p targeted genes involved in the sphingolipid signaling pathway, such as Pten and Tnf, while mmu-miR-451a targeted Nsmaf, Gnai3, and Akt3. Moreover, mmu-miR-451a targeted Myc in signaling pathways regulating the pluripotency of stem cells. In conclusion, fasudil treatment enhanced cognitive function by modulating exosomal MicroRNAs, particularly mmu-miR-451a and mmu-miR-19a-3p. These miRNAs hold promise as potential biomarkers and therapeutic targets for novel AD treatments.

5.
Mol Biol Rep ; 50(1): 749-759, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36309614

RESUMO

Microglia are resident macrophages of the central nervous system (CNS). It plays a significant role in immune surveillance under physiological conditions. On stimulation by pathogens, microglia change their phenotypes, phagocytize toxic molecules, secrete pro-inflammatory/anti-inflammatory factors, promotes tissue repair, and maintain the homeostasis in CNS. Accumulation of myelin debris in multiple sclerosis (MS)/experimental autoimmune encephalomyelitis (EAE) inhibits remyelination by decreasing the phagocytosis by microglia and prevent the recovery of MS/EAE. Drug induced microglia phagocytosis could be a novel therapeutic intervention for the treatment of MS/EAE. But the abnormal phagocytosis of neurons and synapses by activated microglia will lead to neuronal damage and degeneration. It indicates that the phagocytosis of microglia has many beneficial and harmful effects in central neurodegenerative diseases. Therefore, simply promoting or inhibiting the phagocytic activity of microglia may not achieve ideal therapeutic results. However, limited reports are available to elucidate the microglia mediated phagocytosis and its underlying molecular mechanisms. On this basis, the present review describes microglia-mediated phagocytosis, drug-induced microglia phagocytosis, molecular mechanism, and novel approach for MS/EAE treatment.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Microglia , Fagocitose , Macrófagos , Camundongos Endogâmicos C57BL
6.
Bioorg Chem ; 107: 104608, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33465668

RESUMO

Non-Steroidal biologically active heterocyclic compounds 4-(2-(4-chlorophenyl) benzo[d]thiazol-3(2H)-yl)-N-((3-substituted-2-hydrobenzo[d]thiazol-2-yl)methylene) thiazol-2-amine (3a-3d), 4-(2-(4-chlorophenyl)benzo[d]thiazol-3(2H)-yl)-N-((3-substituted - 2-hydrobenzo [d]thiazol-2-yl)methylene)oxazol-2-amine (3a'-3d'), (Z)-N'-(4-(2-(4-chlorophenyl)benzo[d]thiazol-3(2H)-yl)thiaol-2-yl)-N-(4-substituted phenylimino)-3-substituted-2-hydrobenzo[d]thiazole-2-carboxamidine (4a-4 h) and (Z)-N'-(4-(2-(4-chlorophenyl)benzo[d]thiazol-3(2H)-yl)oxazol-2-yl)-N-(4-substituted phenylimino) - 3-substituted-2-hydrobenzo[d]thiazole-2-carboxamidine (4a'-4h') were synthesized starting from 2-chloro-1-(2-(4-chlorophenyl)benzo[d]thiazol-3(2H)-yl) ethanone (1). The structure configuration of newly synthesized compounds has been determined by elemental analysis and various spectroscopic (IR, 1HNMR and GCMS) techniques. These compounds were tested for their anti-inflammation, analgesic, ulcerogenic, acute toxicity and free radical scavenging action and compared with reference drugs in albino rats. Compound 4-(2-(4-chlorophenyl)benzo[d]thiazol-3(2H)-yl)-N-((3-substituted-2-hydrobenzo [d]thiazol-2-yl)methylene)thiazol-2-amine (3c) was the most active compound than reference drug at a dose of 50 mg/kg p.o.


Assuntos
Analgésicos/síntese química , Anti-Inflamatórios/síntese química , Benzotiazóis/química , Analgésicos/química , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Antioxidantes/química , Benzotiazóis/síntese química , Benzotiazóis/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/patologia , Camundongos , Conformação Molecular , Oxazóis/química , Dor/induzido quimicamente , Dor/tratamento farmacológico , Ratos , Relação Estrutura-Atividade , Tiazóis/química
7.
Metab Brain Dis ; 34(2): 377-384, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30552558

RESUMO

Multiple sclerosis (MS), Parkinson's disease (PD), Alzheimer's disease (AD), and other neurodegenerative diseases of central nervous system (CNS) disorders are serious human health problems. Rho-kinase (ROCK) is emerging as a potentially important therapeutic target relevant to inflammatory neurodegeneration diseases. This is supported by studies showing the beneficial effects of fasudil, a ROCK inhibitor, in inflammatory neurodegeneration diseases. MS is an autoimmune disease resulting from inflammation and demyelination in the white matter of the CNS. It has been postulated that activation of Rho/ROCK causes neuropathological changes accompanied with related clinical symptoms, which are improved by treatment with ROCK inhibitors. Therefore, inhibition of abnormal activation of the Rho/ROCK signaling pathway appears to be a new mechanism for treating CNS diseases. In this review, we extensively discussed the role of ROCK inhibitors, summarized the efficacy of fasudil in the MS conventional animal model of experimental autoimmune encephalomyelitis (EAE), both in vivo and in vitro, and highlighted the mechanism involved. Overall, the findings collected in this review support the role of the ROCK signaling pathway in neurodegenerative diseases. Hence, ROCK inhibitors such as fasudil can be novel, and efficacious treatment for inflammatory neurodegenerative diseases.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Animais , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/diagnóstico , Humanos , Inflamação/tratamento farmacológico , Esclerose Múltipla/diagnóstico
8.
Metab Brain Dis ; 34(6): 1787-1801, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31482248

RESUMO

Alzheimer's disease (AD), a chronic, progressive, neurodegenerative disorder, is the most common type of dementia. Beta amyloid (Aß) peptide aggregation and phosphorylated tau protein accumulation are considered as one of the causes for AD. Our previous studies have demonstrated the neuroprotective effect of the Rho kinase inhibitor fasudil, but the mechanism remains elucidated. In the present study, we examined the effects of fasudil on Aß1-42 aggregation and apoptosis and identified the intracellular signaling pathways involved in these actions in primary cultures of mouse hippocampal neurons. The results showed that fasudil increased neurite outgrowth (52.84%), decreased Aß burden (46.65%), Tau phosphorylation (96.84%), and ROCK-II expression. In addition, fasudil reversed Aß1-42-induced decreased expression of Bcl-2 and increases in caspase-3, cleaved-PARP, phospho-JNK(Thr183/Tyr185), and phospho-ASK1(Ser966). Further, fasudil decreased mitochondrial membrane potential and intracellular calcium overload in the neurons treated with Aß1-42. These results suggest that inhibition of Rho kinase by fasudil reverses Aß1-42-induced neuronal apoptosis via the ASK1/JNK signal pathway, calcium ions, and mitochondrial membrane potential. Fasudil could be a drug of choice for treatment of Alzheimer's disease.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Apoptose/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Neurônios/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Peptídeos beta-Amiloides , Animais , Hipocampo/metabolismo , Camundongos , Neurônios/metabolismo , Fragmentos de Peptídeos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores , Proteínas tau/metabolismo
9.
Indian J Med Res ; 141(1): 100-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25857501

RESUMO

BACKGROUND & OBJECTIVES: In the traditional system of medicine in India Ashwagandha powder and Sidh Makardhwaj have been used for the treatment of rheumatoid arthritis. However, safety and efficacy of this treatment have not been evaluated. Therefore, the present study was carried out to evaluate the efficacy and safety of Ayurvedic treatment (Ashwagandha powder and Sidh Makardhwaj) in patients with rheumatoid arthritis. METHODS: One hundred and twenty five patients with joint pain were screened at an Ayurvedic hospital in New Delhi, India. Eighty six patients satisfied inclusion criteria and were included in the study. Detailed medical history and physical examination were recorded. Patients took 5g of Ashwagandha powder twice a day for three weeks with lukewarm water or milk. Sidh Makardhwaj (100 mg) with honey was administered daily for the next four weeks. The follow up of patients was carried out every two weeks. The primary efficacy end point was based on American College of Rheumatology (ACR) 20 response. Secondary end points were ACR50, ACR70 responses, change from baseline in disease activity score (DAS) 28 score and ACR parameters. Safety assessments were hepatic function [alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), bilirubin and ß2 microglobulin], renal function (urea and creatinine and NGAL) tests and urine mercury level. RESULTS: The study was completed by 90.7 per cent (78/86) patients. Patients with moderate and high disease activity were 57.7 per cent (45/78) and 42.3 per cent (33/78), respectively. All patients were tested positive for rheumatoid factor and increased ESR level. Ashwagandha and Sidh Makardhwaj treatment decreased RA factor. A significant change in post-treatment scores of tender joint counts, swollen joint counts, physician global assessment score, patient global assessment score, pain assessment score, patient self assessed disability index score and ESR level were observed as compared to baseline scores. ACR20 response was observed in 56.4 per cent (44/78) patients (American College of Rheumatology criteria) and moderate response in 39.74 per cent (31/78) patients [European League Against Rheumatism (EULAR) criteria]. Ayurvedic treatment for seven weeks in rheumatoid arthritis patients showed normal kidney and liver function tests. However, increased urinary mercury levels were was observed after treatment. INTERPRETATION & CONCLUSIONS: The findings of the present study suggest that this Ayurvedic treatment (Ashwagandha powder and Sidh Makardhwaj) has a potential to be used for the treatment of rheumatoid arthritis. However, due to small sample size, short duration, non randomization and lack of a control group as study limitations, further studies need to be done to confirm these findings.


Assuntos
Artrite Reumatoide/terapia , Ayurveda , Segurança do Paciente , Extratos Vegetais , Feminino , Humanos , Masculino , Projetos Piloto , Estudos Prospectivos
10.
Indian J Med Res ; 139(4): 610-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24927349

RESUMO

BACKGROUND & OBJECTIVES: Sidh Makardhwaj (SM) is a mercury based Ayurvedic formulation used in rheumatoid arthritis and neurological disorders. However, toxicity concerns due to mercury content are often raised. Therefore, the present study was carried out to evaluate the effect of SM on brain cerebrum, liver and kidney in rats. METHODS: Graded doses of SM (10, 50, 100 mg/kg), mercuric chloride (1 mg/kg) and normal saline were administered orally to male Wistar rats for 28 days. Behavioural parameters were assessed on days 1, 7, 14 and 28 using Morris water maze, passive avoidance, elevated plus maze and rota rod. Liver and kidney function tests were done on day 28. Animals were sacrificed and brain cerebrum acetylcholinesterase activity, levels of malondialdehyde (MDA), reduced glutathione (GSH) in brain cerebrum, liver, kidney were estimated. The levels of mercury in brain cerebrum, liver and kidney were estimated and histopathology of these tissues was also performed. RESULTS: SM in the doses used did not cause significant change in neurobehavioural parameters, brain cerebrum AChE activity, liver (ALT, AST, ALP bilirubin) and kidney (serum urea and creatinine) function tests as compared to control. The levels of mercury in brain cerebrum, liver, and kidney were found to be raised in dose dependent manner. However, the levels of MDA and GSH in these tissues did not show significant changes at doses of 10 and 50 mg/kg. Also, there was no histopathological change in cytoarchitecture of brain cerebrum, liver, and kidney tissues at doses of 10 and 50 mg/kg. INTERPRETATION & CONCLUSIONS: The findings of the present study suggest that Sidh Makardhwaj upto five times the equivalent human dose administered for 28 days did not show any toxicological effects on rat brain cerebrum, liver and kidney.


Assuntos
Cérebro/efeitos dos fármacos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Ayurveda , Cloreto de Mercúrio/farmacocinética , Cloreto de Mercúrio/toxicidade , Acetilcolinesterase/metabolismo , Administração Oral , Análise de Variância , Animais , Glutationa/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Cloreto de Mercúrio/administração & dosagem , Ratos , Teste de Desempenho do Rota-Rod , Fatores de Tempo
11.
Curr Pharm Des ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39041269

RESUMO

A unique extreme acute breathing syndrome emerged in China and spread rapidly globally due to a newly diagnosed human coronavirus and declared a pandemic. COVID-19 was formally named by WHO, and the Global Committee on Taxonomy referred to it as extreme Acute respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Currently there is no efficient method to control the extent of SARS-CoV-2 other than social distancing and hygiene activities. This study aims to present a simple medicinal strategy for combating fatal viral diseases like COVID-19 with minimum effort and intervention. Different Ayurveda medicines (Curcuma longa, green tea, andPiper nigrum) inhibit virus entrance and pathogen transmission while also enhancing immunity. Piperine (1-piperoylpiperidine), as well as curcumin, combine to create an intermolecular complex (ππ) that improves curcumin bioavailability by inhibiting glucuronidation of curcumin in the liver. The receptor-binding domains of the S-protein and also the angiotensin-converting enzyme 2 receptor of the recipient organism are directly occupied by curcumin and catechin, respectively, thereby preventing viruses from entering the cell. As a result, the infection will be tolerated by the animal host.

12.
CNS Neurosci Ther ; 30(3): e14638, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488445

RESUMO

AIMS: The open-loop nature of conventional deep brain stimulation (DBS) produces continuous and excessive stimulation to patients which contributes largely to increased prevalence of adverse side effects. Cerebellar ataxia is characterized by abnormal Purkinje cells (PCs) dendritic arborization, loss of PCs and motor coordination, and muscle weakness with no effective treatment. We aim to develop a real-time field-programmable gate array (FPGA) prototype targeting the deep cerebellar nuclei (DCN) to close the loop for ataxia using conditional double knockout mice with deletion of PC-specific LIM homeobox (Lhx)1 and Lhx5, resulting in abnormal dendritic arborization and motor deficits. METHODS: We implanted multielectrode array in the DCN and muscles of ataxia mice. The beneficial effect of open-loop DCN-DBS or closed-loop DCN-DBS was compared by motor behavioral assessments, electromyography (EMG), and neural activities (neurospike and electroencephalogram) in freely moving mice. FPGA board, which performed complex real-time computation, was used for closed-loop DCN-DBS system. RESULTS: Closed-loop DCN-DBS was triggered only when symptomatic muscle EMG was detected in a real-time manner, which restored motor activities, electroencephalogram activities and neurospike properties completely in ataxia mice. Closed-loop DCN-DBS was more effective than an open-loop paradigm as it reduced the frequency of DBS. CONCLUSION: Our real-time FPGA-based DCN-DBS system could be a potential clinical strategy for alleviating cerebellar ataxia and other movement disorders.


Assuntos
Ataxia Cerebelar , Estimulação Encefálica Profunda , Transtornos dos Movimentos , Humanos , Camundongos , Animais , Ataxia Cerebelar/genética , Ataxia Cerebelar/terapia , Estimulação Encefálica Profunda/métodos , Cerebelo , Células de Purkinje/fisiologia , Núcleos Cerebelares/fisiologia
13.
Curr Pharm Des ; 30(22): 1708-1724, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38797901

RESUMO

Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide. There may be more than a million instances of hepatocellular carcinoma by 2025, making it a persistent concern for global health. The most common form of hepatocellular carcinoma accounts for more than 90% of cases. There is no known cure for hepatocellular carcinoma, which is usually detected late in life. Unlike most other common malignancies, such as lung, prostate, and breast cancers, where mortality rates are declining, rates of death are rising by around 2-3% every year. It is extremely difficult to diagnose hepatocellular carcinoma in its early stages. Alpha-fetoprotein serology studies and ultrasonography (US) monitoring were historically the primary methods for early detection of hepatocellular cancer. However, the sensitivity or specificity of ultrasonography/alpha-fetoprotein (US/AFP) is not high enough to detect hepatocellular carcinoma in its early stages. Alpha-fetoprotein, or AFP, is an amino acid that is normally produced by the liver or yolk sac of an embryonic baby. In adults, AFP levels are typically modest. Adults with high levels of AFP have been associated with several illnesses, the most well-known of which are certain types of cancer. It is still possible to diagnose hepatocellular carcinoma early because of current technological advancements. We address the advancements in the diagnosis of hepatocellular carcinoma in this article, with a focus on new imaging techniques and diagnostic markers for early-stage tumor identification.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patologia , alfa-Fetoproteínas/análise , alfa-Fetoproteínas/metabolismo , Estadiamento de Neoplasias , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/análise
14.
Mol Neurobiol ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285289

RESUMO

Oxidative stress is widely involved in the pathological process of ischemic stroke and ischemia-reperfusion. Several research have demonstrated that eliminating or reducing oxidative stress can alleviate the pathological changes of ischemic stroke. However, current clinical antioxidant treatment did not always perform as expected. This bibliometric research aims to identify research trends, topics, hotspots, and evolution on oxidative stress in the field of ischemic stroke, and to find potentially antioxidant strategies in future clinical treatment. Relevant publications were searched from the Web of Science (WOS) Core Collection databases (2001-2022). VOSviewer was used to visualize and analyze the development trends and hotspots. In the field of oxidative stress and ischemic stroke, the number of publications increased significantly from 2001 to 2022. China and the USA were the leading countries for publication output. The most prolific institutions were Stanford University. Journal of Cerebral Blood Flow and Metabolism and Stroke were the most cited journals. The research topics in this field include inflammation with oxidative stress, mitochondrial damage with oxidative stress, oxidative stress in reperfusion injury, oxidative stress in cognitive impairment and basic research and clinical translation of oxidative stress. Moreover, "NLRP3 inflammasome," "autophagy," "mitophagy," "miRNA," "ferroptosis," and "signaling pathway" are the emerging research hotspots in recent years. At present, multi-target regulation focusing on multi-mechanism crosstalk has progressed across this period, while challenges come from the transformation of basic research to clinical application. New detection technology and new nanomaterials are expected to integrate oxidative stress into the clinical treatment of ischemic stroke better.

15.
Neural Netw ; 162: 541-556, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37023628

RESUMO

Computational neural network modelling is an emerging approach for optimization of drug treatment of neurological disorders and fine-tuning of rehabilitation strategies. In the current study, we constructed a cerebello-thalamo-cortical computational neural network model to simulate a mouse model of cerebellar ataxia (pcd5J mice) by manipulating cerebellar bursts through reduction of GABAergic inhibitory input. Cerebellar output neurons were projected to the thalamus and bidirectionally connected with the cortical network. Our results showed that reduction of inhibitory input in the cerebellum orchestrated the cortical local field potential (LFP) dynamics to generate specific motor outputs of oscillations of the theta, alpha, and beta bands in the computational model as well as in mouse motor cortical neurons. The therapeutic potential of deep brain stimulation (DBS) was tested in the computational model by increasing the sensory input to restore cortical output. Ataxia mice showed normalization of the motor cortex LFP after cerebellum DBS. We provide a novel approach to computational modelling to investigate the effect of DBS by mimicking cerebellar ataxia involving degeneration of Purkinje cells. Simulated neural activity coincides with findings from neural recordings of ataxia mice. Our computational model could thus represent cerebellar pathologies and provide insight into how to improve disease symptoms by restoring neuronal electrophysiological properties using DBS.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Camundongos , Animais , Ataxia Cerebelar/terapia , Cerebelo/fisiologia , Ataxias Espinocerebelares/terapia , Células de Purkinje , Ataxia
16.
Folia Neuropathol ; 61(3): 273-290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818688

RESUMO

Astragaloside IV (AST IV), a major saponin component and active ingredient isolated from Astragalus membranaceus, has been well known to exhibit neuroprotective effects on diverse models of neurological diseases. Accumulating evidence suggests that dynamic balance of microglia/macrophages and astrocytes plays a vital role in neuroprotection and remyelination. However, dysregulation of microglia/macrophages and astrocytes orchestrate the pathogenesis of nervous system disorders. Therefore, we hypothesized that switching the transformation of microglia/macrophages and astrocytes into the neuroprotective M2 and A2 phenotypes, respectively, could be a potential target for therapeutic intervention. In the present study, we evaluate the efficacy of AST IV intervention on the effects of microglia/macrophages and astrocytes in an experimental autoimmune encephalomyelitis (EAE) model. AST IV improved paralysis and pathology of EAE by inhibiting the neurotoxic M1 microglia/macrophage phenotype, promoting M2 phenotype, shifting astrocytes towards a neuroprotective A2 phenotype, and protecting neurons from apoptosis through inhibition of TLR4/Myd88/NF-kB signalling pathway. Our study showed that AST IV could be a potential and promising drug for multiple sclerosis treatment.


Assuntos
Encefalomielite Autoimune Experimental , Saponinas , Animais , Humanos , Camundongos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Microglia/metabolismo , Astrócitos/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Saponinas/farmacologia , Camundongos Endogâmicos C57BL
17.
Curr Pharm Des ; 29(42): 3343-3356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38058089

RESUMO

Neuropathy is a terrible disorder that has a wide range of etiologies. Drug-induced neuropathy, which happens whenever a chemical agent damages the peripheral nerve system, has been linked here to the iatrogenic creation of some drugs. It is potentially permanent and causes sensory impairments and paresthesia that typically affects the hands, feet, and stockings; motor participation is uncommon. It might appear suddenly or over time, and the long-term outlook varies. The wide range of chronic pain conditions experienced by people has been one of the main obstacles to developing new, more effective medications for the treatment of neuropathic pain. Animal models can be used to examine various neuropathic pain etiologies and symptoms. Several models investigate the peripheral processes of neuropathic pain, whereas some even investigate the central mechanisms, such as drug induce models like vincristine, cisplatin, bortezomib, or thalidomide, etc., and surgical models like sciatic nerve chronic constriction injury (CCI), sciatic nerve ligation through spinal nerve ligation (SNL), sciatic nerve damage caused by a laser, SNI (spared nerve injury), etc. The more popular animal models relying on peripheral nerve ligatures are explained. In contrast to chronic sciatic nerve contraction, which results in behavioral symptoms of less reliable stressful neuropathies, (SNI) spared nerve injury generates behavioral irregularities that are more feasible over a longer period. This review summarizes the latest methods models as well as clinical ideas concerning this mechanism. Every strongest current information on neuropathy is discussed, along with several popular laboratory models for causing neuropathy.


Assuntos
Neuralgia , Animais , Doença Crônica , Modelos Animais de Doenças , Hiperalgesia/complicações , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Medição da Dor/métodos , Nervo Isquiático/lesões
18.
Front Aging Neurosci ; 14: 1019187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268188

RESUMO

Alzheimer's disease (AD) is the most common form of dementia and is ranked as the 6th leading cause of death in the US. The prevalence of AD and dementia is steadily increasing and expected cases in USA is 14.8 million by 2050. Neuroinflammation and gradual neurodegeneration occurs in Alzheimer's disease. However, existing medications has limitation to completely abolish, delay, or prevent disease progression. Phosphodiesterases (PDEs) are large family of enzymes to hydrolyze the 3'-phosphodiester links in cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) in signal-transduction pathways for generation of 5'-cyclic nucleotides. It plays vital role to orchestrate several pharmacological activities for proper cell functioning and regulating the levels of cAMP and cGMP. Several evidence has suggested that abnormal cAMP signaling is linked to cognitive problems in neurodegenerative disorders like AD. Therefore, the PDE family has become a widely accepted and multipotential therapeutic target for neurodegenerative diseases. Notably, modulation of cAMP/cGMP by phytonutrients has a huge potential for the management of AD. Natural compounds have been known to inhibit phosphodiesterase by targeting key enzymes of cGMP synthesis pathway, however, the mechanism of action and their therapeutic efficacy has not been explored extensively. Currently, few PDE inhibitors such as Vinpocetine and Nicergoline have been used for treatment of central nervous system (CNS) disorders. Considering the role of flavonoids to inhibit PDE, this review discussed the therapeutic potential of natural compounds with PDE inhibitory activity for the treatment of AD and related dementia.

19.
Mol Neurobiol ; 59(7): 4578-4592, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35581519

RESUMO

Cerebellum is one of the major targets of autoimmunity and cerebellar damage that leads to ataxia characterized by the loss of fine motor coordination and balance, with no treatment available. Deep brain stimulation (DBS) could be a promising treatment for ataxia but has not been extensively investigated. Here, our study aims to investigate the use of interposed nucleus of deep cerebellar nuclei (IN-DCN) for ataxia. We first characterized ataxia-related motor symptom of a Purkinje cell (PC)-specific LIM homeobox (Lhx)1 and Lhx5 conditional double knockout mice by motor coordination tests, and spontaneous electromyogram (EMG) recording. To validate IN-DCN as a target for DBS, in vivo local field potential (LFP) multielectrode array recording of IN-DCN revealed abnormal LFP amplitude surges in PCs. By synchronizing the EMG and IN-DCN recordings (neurospike and LFP) with high-speed video recordings, ataxia mice showed poorly coordinated movements associated with low EMG amplitude and aberrant IN-DCN neural firing. To optimize IN-DCN-DBS for ataxia, we tested DBS parameters from low (30 Hz) to high stimulation frequency (130 or 150 Hz), and systematically varied pulse width values (60 or 80 µs) to maximize motor symptom control in ataxia mice. The optimal IN-DCN-DBS parameter reversed motor deficits in ataxia mice as detected by animal behavioral tests and EMG recording. Mechanistically, cytokine array analysis revealed that anti-inflammatory cytokines such as interleukin (IL)-13 and IL-4 were upregulated after IN-DCN-DBS, which play key roles in neural excitability. As such, we show that IN-DCN-DBS is a promising treatment for ataxia and possibly other movement disorders alike.


Assuntos
Ataxia Cerebelar , Estimulação Encefálica Profunda , Animais , Anti-Inflamatórios , Citocinas , Camundongos , Camundongos Knockout
20.
Front Cell Neurosci ; 16: 949521, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159395

RESUMO

Background: Stroke, including ischemic stroke and hemorrhagic stroke, possesses complex pathological mechanisms such as neuroinflammation, oxidative stress and blood-brain barrier damage. Astrocyte functions have been reported during injury, neuroprotection and cell crosstalk. It plays a key role in exacerbating stroke injury, promoting neurological repair and enhancing neuroregeneration. Aim: This holistic bibliometric analysis aimed to provide a general overview of the recent advancement and the hotspots in the field of stroke and astrocyte from 2001 to 2021. Materials and methods: Publications between 2001 and 2021, related to stroke and astrocyte were retrieved from the Web of Science (WOS) and analyzed in Gephi and VOSviewer. Results: In total, 3789 documents were extracted from the WOS databases. The publications showed stable growth since 2001. The United States and China were the most prolific countries and University of California San Francisco and Oakland University were the most influential institutes. The top four most productive journals were Brain Research, Journal of Cerebral Blood Flow and Metabolism, Glia and Journal of Neuroinflammation. Keywords frequency and co-occurrence analysis revealed that the topics related to "micro-RNA", "toll like receptor", "neuroinflammation", "autophagy" and "interleukin" were research frontiers. The field of stroke and astrocyte focused on several aspects, such as the role of astrocytes in the treatment of stroke, metabolic changes in astrocytes, the protective role of apoptosis in astrocytes after oxidative stress injury and neurovascular units. Conclusion: This comprehensive bibliometric study provides an updated perspective on the trend of research associated with stroke and astrocyte. It will benefit scientific community to identify the important issues, future directions and provide a novel understanding of stroke pathophysiology, hotspots and frontiers to facilitate future research direction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA