Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Immunol ; 54(7): e2350624, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38655818

RESUMO

Pathogenic infections cause thymic atrophy, perturb thymic T-cell development, and alter immunological response. Previous studies reported dysregulated T-cell function and lymphopenia in coronavirus disease-19 (COVID-19). However, immunopathological changes in the thymus associated with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection have not been elucidated. Here, we report that SARS-CoV-2 infects thymocytes, and induces CD4+CD8+ (double positive; DP) T-cell apoptosis leading to thymic atrophy and loss of peripheral TCR repertoire in K18-hACE2 transgenic mice. Infected thymus led to increased CD44+CD25- T-cells, indicating an early arrest in the T-cell maturation pathway. Thymic atrophy was notably higher in male hACE2-Tg mice than in females and involved an upregulated de-novo synthesis pathway of thymic glucocorticoid. Further, IFN-γ was crucial for thymic atrophy, as anti-IFN-γ -antibody neutralization blunted thymic involution. Therapeutic use of Remdesivir also rescued thymic atrophy. While the Omicron variant and its sub-lineage BA.5 variant caused marginal thymic atrophy, the delta variant of SARS-CoV-2 exhibited severe thymic atrophy characterized by severely depleted DP T-cells. Recently characterized broadly SARS-CoV-2 neutralizing monoclonal antibody P4A2 was able to rescue thymic atrophy and restore the thymic maturation pathway of T-cells. Together, we report SARS-CoV-2-associated thymic atrophy resulting from impaired T-cell maturation pathway which may contribute to dyregulated T cell response during COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2 , Atrofia , COVID-19 , Interferon gama , Camundongos Transgênicos , SARS-CoV-2 , Timo , Animais , COVID-19/imunologia , COVID-19/patologia , SARS-CoV-2/imunologia , Timo/patologia , Timo/imunologia , Camundongos , Interferon gama/metabolismo , Interferon gama/imunologia , Atrofia/imunologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Feminino , Humanos , Masculino , Timócitos/imunologia , Apoptose , Linfócitos T CD8-Positivos/imunologia
2.
Small ; 20(32): e2312215, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38497820

RESUMO

The systematic structure modification of metal oxides is becoming more attractive, and effective strategies for structural tunning are highly desirable for improving their practical color-modulating energy storage performances. Here, the ability of a stoichiometrically tuned oxide-hydroxide complex of porous vanadium oxide, namely [V2O2+ξ(OH)3-ξ]ξ = 0:3 for multifunctional electrochromic supercapacitor application is demonstrated. Theoretically, the pre-optimized oxide complex is synthesized using a simple wet chemical etching technique in its optimized stoichiometry [V2O2+ξ(OH)3-ξ] with ξ = 0, providing more electroactive surface sites. The multifunctional electrode shows a high charge storage property of 610 Fg-1 at 1A g-1, as well as good electrochromic properties with high color contrast of 70% and 50% at 428 and 640 nm wavelengths, faster switching, and high coloration efficiency. When assembled in a solid-state symmetric electrochromic supercapacitor device, it exhibits an ultrahigh power density of 1066 mWcm-2, high energy density of 246 mWhcm-2, and high specific capacitance of 290 mFcm-2 at 0.2 mAcm-2. A prepared prototype device displays red when fully charged, green when half charged, and blue when fully discharged. A clear evidence of optimizing the multifunctional performance of electrochromic supercapacitor by stoichiometrical tuning is presented along with demonstrating a device prototype of a 25 cm2 large device for real-life applications.

3.
Pediatr Res ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992155

RESUMO

BACKGROUND: Potential failing adult brain sites, stratified by risk, mediating Sudden Unexpected Death in Epilepsy (SUDEP) have been described, but are unknown in children. METHODS: We examined regional brain volumes using T1-weighted MRI images in 21 children with epilepsy at high SUDEP risk and 62 healthy children, together with SUDEP risk scores, calculated from focal seizure frequency. Gray matter tissue type was partitioned, maps normalized, smoothed, and compared between groups (SPM12; ANCOVA; covariates, age, sex, and BMI). Partial correlations between regional volumes and seizure frequency were examined (SPM12, covariates, age, sex, and BMI); 67% were at high risk for SUDEP. RESULTS: The cerebellar cortex, hippocampus, amygdala, putamen, cingulate, thalamus, and para-hippocampal gyrus showed increased gray matter volumes in epilepsy, and decreased volumes in the posterior thalamus, lingual gyrus, and temporal cortices. The cingulate, insula, and putamen showed significant positive relationships with focal seizure frequency indices using whole-brain voxel-by-voxel partial correlations. Tissue volume changes in selected sites differed in direction from adults; particularly, cerebellar sites, key for hypotensive recovery, increased rather than adult declines. CONCLUSION: The volume increases may represent expansion by inflammatory or other processes that, with sustained repetitive seizure discharge, lead to tissue volume declines described earlier in adults. IMPACT: Children with epilepsy, who are at risk for Sudden Unexplained Death, show changes in brain volume that often differ in direction of change from adults at risk for SUDEP. Sites of volume change play significant roles in mediating breathing and blood pressure, and include areas that serve recovery from prolonged apnea and marked loss of blood pressure. The extent of volume changes correlated with focal seizure frequency. Although the underlying processes contributing to regional volume changes remain speculative, regions of tissue swelling in pediatric brain areas may represent transitory conditions that later lead to tissue loss in the adult condition.

4.
J Org Chem ; 89(5): 2873-2884, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354303

RESUMO

We have developed the first I2/base-catalyzed regio- and stereoselective intermolecular ß-amidosulfonylation of terminal alkynes using sodium sulfinates and quinoxalinone derivatives. The present methodology is compatible with a broad spectrum of various heterocyclic amides, terminal alkynes, and sodium sulfinates. It provides rapid access to valuable (Z)-ß-amidovinyl sulfones at mild conditions. Moreover, the synthetic application of this methodology was demonstrated by the late-stage functionalization of numerous bioactive molecules.

5.
Photochem Photobiol Sci ; 23(5): 881-899, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581535

RESUMO

Six red-light-emitting Eu(III) complexes having a ß-hydroxyketone as ligand and heterocyclic ring containing compounds as ancillary ligands were synthesized to explore their use in displays and optoelectronics. The coordinating behavior of complexes was determined by various techniques such as FTIR (Fourier transform infrared), 1H-NMR (Nuclear magnetic resonance), and 13C-NMR that establishes a bonding of ligand and ancillary ligand with the Eu(III) ion. Morphology and purity were investigated through XRD (X-ray diffraction), SEM (scanning electron microscopy) and EDS (energy-dispersive X-ray spectroscopy) analyses that suggest semicrystalline and pure complex formation. Thermal analysis of complexes by TGA/DTG (thermogravimetric/derivative thermogravimetric) indicates that complexes are stable upto 200 ºC temperature making them suitable for use in display devices. Analysis of the photophysical properties was carried out in both solid and solution states using PL (photoluminescence) studies, color parameters, J-O (Judd-Ofelt) analysis and bandgap. Most emissive transition (5D0 → 7F2) is responsible for the red emission in the complexes. The CIE (Commission International de I'Eclairage) coordinates of complexes also indicate the red emission on UV excitation. The bandgap which was obtained in the range of 2.54-3.02 eV reveals the semiconducting behavior of complexes. Values of J-O parameters and Ω2 in the complexes reflect asymmetric chemical environment around Eu (III) and less covalence and the Ω4 indicates that complexes are less rigid. Bandgap calculated through DFT (density function theory) for complexes is in range of 2.37-2.77 eV, and intensity parameters (J-O), energy transfer rates, and spherical coordinates were determined by LUMPAC software. The computational data are in good harmony with the experimental data. Further biological aspects of complexes were studied using antioxidant and antimicrobial studies.

6.
Inorg Chem ; 63(27): 12506-12515, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38912934

RESUMO

Two new vanadyl complexes of N-confused porphyrins (NCPs), [VONCTPP] (V-1) and [VONCP(OMe)8] (V-2), have been synthesized for the first time and investigated as a catalyst for the oxidative bromination reaction of phenol and its derivatives. This article further delineates crystal structures, photophysical, and redox properties of both the vanadyl complexes. Complexes V-1 and V-2 exhibited a significant red shift in their absorption spectra compared with their respective free bases. The single-crystal structure of V-1 revealed that the complex is in the 2H tautomeric form, while EPR studies revealed the +4 oxidation state of vanadium metal having an axial compression with dxy1 configuration. Catalytic potential for bromoperoxidases-like activity has been explored for both complexes V-1 and V-2 for the first time in NCP chemistry with excellent TOF values (4.7-6.3 s-1 for V-1 and 7.3-8.7 s-1 for V-2) using KBr as a source of bromine and H2O2 as a green oxidant in aqueous acidic medium at 298 K. Notably, both catalysts show excellent recyclability over five cycles. The vanadyl-metalated NCPs exhibit excellent stability in the air.

7.
Org Biomol Chem ; 22(16): 3109-3185, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38529599

RESUMO

Iodine-containing molecules, especially hypervalent iodine compounds, have gained significant attention in organic synthesis. They are valuable and sustainable reagents, leading to a remarkable surge in their use for chemical transformations. One such hypervalent iodine compound, phenyliodine bis(trifluoroacetate)/bis(trifluoroacetoxy)iodobenzene, commonly referred to as PIFA, has emerged as a prominent candidate due to its attributes of facile manipulation, moderate reactivity, low toxicity, and ready availability. PIFA presents an auspicious prospect as a substitute for costly organometallic catalysts and environmentally hazardous oxidants containing heavy metals. PIFA exhibits remarkable catalytic activity, facilitating an array of consequential organic reactions, including sulfenylation, alkylarylation, oxidative coupling, cascade reactions, amination, amidation, ring-rearrangement, carboxylation, and numerous others. Over the past decade, the application of PIFA in synthetic chemistry has witnessed substantial growth, necessitating an updated exploration of this field. In this discourse, we present a concise overview of PIFA's applications as a 'green' reagent in the domain of synthetic organic chemistry. A primary objective of this article is to bring to the forefront the scientific community's awareness of the merits associated with adopting PIFA as an environmentally conscientious alternative to heavy metals.

8.
Nanotechnology ; 35(19)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38286014

RESUMO

Janus monolayers based on transition metal dichalcogenides have garnered significant interest as potential materials for nano electronic device applications due to their exceptional physical and electronic properties. In this study, we investigate the stability of the Janus HfSSe monolayer usingab initiomolecular dynamics simulations and analyze the electronic properties in its pristine state. We then examine the impact of adsorbing toxic gas molecules (AsH3, COCl2, NH3, NO2, and SO2) on the monolayer's structure and electronic properties, testing their adsorption on different active sites on top of hafnium, selenium, and sulfur. The sensitivity of the gas molecules is quantified in terms of their adsorption energy, with the highest and lowest energies being observed for SO2(-0.278 eV) and NO2(-0.095 eV), respectively. Additionally, we calculate other properties such as recovery time, adsorption height, Bader charge, and charge difference density to determine the sensitivity and selectivity of the toxic gas molecules. Our findings suggest that the Janus HfSSe monolayer has the potential to function as SO2and COCl2gas sensor due to its high sensitivity for these two gases.

9.
J Fluoresc ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904873

RESUMO

Six novel red photoluminescent Eu3+ complexes with 3-formyl chromone as the primary sensitizer (L) were synthesized using the solution precipitation method. These complexes are [Eu(L3).X] where X is 2H2O (C1), phen (C2), neo (C3), bipy (C4), dmph (C5), and biquno (C6). These complexes were characterized by elemental analysis, EDAX analysis, SEM, FT-IR, thermo-gravimetric analysis (TGA/DTA) and photoluminescence spectra. The transition rates, quantum efficiency, and J-O intensity parameters were calculated using emission data and luminescence decay time (τ). Complexes exhibit a strong emission peak (5D0 → 7F2) of the Eu3+ ion in their luminescence emission spectra in solid and solution states, making them an effective emitter of the red color in OLEDs. The branching ratio of these complexes ranges from 80.67-82.92 in solid and 50.53-62.65 in solution state; CIE color coordinate of complexes falls in the red region. The color purity ranges [CP(%)] values for solid 95.26-97.27% and for solution ranges 85.11-93.43%. Correlated color temperature (CCT) of the complexes (C1-C6) ranged from 2710 to 3049 K in the solid state and 1775 to 2450 K in the solution state. These complexes are promising red emitters in OLEDs, semiconductors, and leasing devices.

10.
Surg Endosc ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955837

RESUMO

AIMS: To evaluate the safety profile of robotic cholecystectomy performed within the United Kingdom (UK) Robotic Hepatopancreatobiliary (HPB) training programme. METHODS: A retrospective evaluation of prospectively collected data from eleven centres participating in the UK Robotic HPB training programme was conducted. All adult patients undergoing robotic cholecystectomy for symptomatic gallstone disease or gallbladder polyp were considered. Bile duct injury, conversion to open procedure, conversion to subtotal cholecystectomy, length of hospital stay, 30-day re-admission, and post-operative complications were the evaluated outcome parameters. RESULTS: A total of 600 patients were included. The median age was 53 (IQR 65-41) years and the majority (72.7%; 436/600) were female. The main indications for robotic cholecystectomy were biliary colic (55.5%, 333/600), cholecystitis (18.8%, 113/600), gallbladder polyps (7.7%, 46/600), and pancreatitis (6.2%, 37/600). The median length of stay was 0 (IQR 0-1) days. Of the included patients, 88.5% (531/600) were discharged on the day of procedure with 30-day re-admission rate of 5.5% (33/600). There were no bile duct injuries and the rate of conversion to open was 0.8% (5/600) with subtotal cholecystectomy rate of 0.8% (5/600). CONCLUSION: The current study confirms that robotic cholecystectomy can be safely implemented to routine practice with a low risk of bile duct injury, low bile leak rate, low conversion to open surgery, and low need for subtotal cholecystectomy.

11.
Biotechnol Appl Biochem ; 71(4): 868-880, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38627930

RESUMO

Most of the Escherichia coli turned into serious pathogens or developed antibiotic resistance, mainly due to their ability to show different phenotypic traits. In order to overcome the resistance to these antibiotics, the use of essential oils (EOs) is of great significance against highly pathogenic microorganisms. This study has been made to compare the in vitro antibacterial activity and further validated the same through the molecular docking study of 13 antibiotics such as ciprofloxacin, chloramphenicol, erythromycin, ampicillin, cefotaxime, rifampicin, kanamycin, vancomycin, streptomycin, penicillin, nalidixic acid, trimethoprim, and polymyxin, and 10 EOs such as garlic, tulsi, neem, clove, thyme, peppermint, coriander, tea, lavender, and eucalyptus against the target protein (DNA gyrase) of E. coli MTCC443. E. coli Microbial Type Culture Collection 443 was found to be highly sensitive to ciprofloxacin (zone of inhibition [ZOI], 2.5 cm ±0.1) and chloramphenicol (ZOI, 1.8 cm ±0.1), whereas garlic oil (ZOI, 5.5 cm ±0.1) and coriander oil (ZOI, 4.4 cm ±0.1) were found comparatively most effective. Further, the in silico investigation observed the same; ciprofloxacin (binding affinity: -7.2 kcal/mol) and chloramphenicol (binding affinity: -6.6 kcal/mol). Penicillin (binding affinity: -4.2 kcal/mol) and polymyxin (binding affinity: -0.3 kcal/mol) were found to be least effective against the tested microbe, whereas vancomycin (binding affinity: +0.8 kcal/mol) had no effect on it. Garlic (binding affinity: -7.8 kcal/mol), coriander (binding affinity: -6.8 kcal/mol), peppermint (binding affinity: -6.2 kcal/mol), and neem (binding affinity: -6.2 kcal/mol) oil exhibited the potent antibacterial activity against E. coli MTCC443, whereas thyme (binding affinity: -6.1 kcal/mol), tea tree (binding affinity: -4.9 kcal/mol), and tulsi (binding affinity: -3.8 kcal/mol) oil were observed moderately effective. Eucalyptus (binding affinity: -2.9 kcal/mol) and lavender (binding affinity: -2.8 kcal/mol) oil were found to be the least effective among all the oils tested. The pharmacokinetics and networking were performed to the pharmacology of the potential compounds.


Assuntos
Antibacterianos , Escherichia coli , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Óleos Voláteis , Antibacterianos/farmacologia , Antibacterianos/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Escherichia coli/efeitos dos fármacos , Óleos de Plantas/química , Óleos de Plantas/farmacologia , DNA Girase/metabolismo , DNA Girase/química
12.
Appl Opt ; 63(1): 104-111, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175006

RESUMO

In recent years, there has been a growing interest in the wideband propagation and control of terahertz (THz) radiation due to its potential for a variety of applications, such as 6G communication, sensing, and imaging. One promising approach in this area is the use of valley photonic crystals (VPCs), which exhibit properties like wider band gaps and robust propagation. In this paper, a two-dimensional dielectric silicon-air VPC is studied, which is constructed from a method of inversion symmetry breaking providing a band gap of 109.4 GHz at a mid-gap frequency of 0.376 THz. We employ an optimized bearded-stack interface to construct the VPC waveguide for wideband THz propagation along straight and Z-shaped paths. We demonstrate that a band-stop response can be achieved in a VPC by introducing periodic defects along the domain wall. Furthermore, the stop range can be tuned by varying the refractive index of the defects through incorporating liquid crystal along the domain wall of VPC. Our proposed structure and the techniques employed could be promising for the development of a band-stop filter (BSF) and other photonic components having potential applications in 6G communication and beyond.

13.
Reprod Domest Anim ; 59(7): e14691, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39039756

RESUMO

The present study analyses the effect of age at first calving (AFC) on future fertility and productivity in Murrah buffaloes. The data of 314 buffalo heifers of animal farm section, ICAR-CIRB, Hisar were collected over a period of 9 years from 2010 to 2018. The buffalo heifers were categorized into six groups according to the AFC named as 30-35, 36-41, 42-47, 48-53, 54-59 and 60-65 months. The influence of AFC on standard lactation milk (SLMY), peak yield (PY), days in milk (DIM), calving to first service, service per conception, calving to conception interval (CCI) and calving interval till fifth lactation were studied. The study revealed poor productive traits in buffalo heifers calved at younger age (30-35 months) during first parity. The productive value positively corresponded with increase in AFC. During successive lactations, higher mean milk yield (SLMY and PY) was found in groups with 36-41, 42-47 and 48-53 months. The mean number of services per conception was lower in buffalo heifers with 36-41 and 42-47 months following first calving till fifth lactation. Similarly, the said groups had lower mean calving to first service, CCI and CI up to fifth lactation. The survival rate was higher in heifers with AFC 36-41, 42-47, 48-53 and 54-59 months than with AFC 30-35 and 60-65 months. The buffalo heifers with 36-41 and 42-47 months of AFC had higher survival rate and better productive and reproductive traits till fifth parity in the current study. The study concluded that a minimum ideal AFC of 36-41 months yielded the highest productive gain.


Assuntos
Búfalos , Fertilidade , Lactação , Leite , Animais , Búfalos/fisiologia , Feminino , Lactação/fisiologia , Gravidez , Fatores Etários
14.
Ann Plast Surg ; 93(3): 319-322, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38920166

RESUMO

ABSTRACT: Congenital flexion contracture of ulnar digits is a rare entity with few cases reported in medical literature. This condition is often misdiagnosed as Volkmann ischemic contracture as both have similar presentation. The patient history, physical examination, radiological investigation, and intra-operative findings can differentiate these 2 conditions clearly. A 14-year-old female presented to a tertiary care hospital with flexion deformity of the left long, ring, and little fingers without neurological deficit since she was 3 years old. Patient had decreased handspan with difficulty in grasping daily life objects. Finger flexion deformity was also not aesthetically acceptable due to social stigma. Patient finger contracture was managed with flexor pronator slide (Max-Page) operation. The muscle slide operation was done using concealed medial incision. Aesthetic and functional correction was achieved with no recurrence at subsequent follow-ups.


Assuntos
Contratura , Contratura Isquêmica , Humanos , Feminino , Adolescente , Contratura/diagnóstico , Contratura/cirurgia , Diagnóstico Diferencial , Contratura Isquêmica/diagnóstico , Contratura Isquêmica/cirurgia , Contratura Isquêmica/congênito , Dedos/anormalidades , Dedos/cirurgia , Deformidades Congênitas da Mão/diagnóstico , Deformidades Congênitas da Mão/cirurgia
15.
Mikrochim Acta ; 191(6): 324, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38730197

RESUMO

A robust "on-off" fluorescent aptasensor was developed using nanohybrids of molybdenum sulfide (MoS2) quantum dot (QD)-doped zinc metal-organic frameworks (Zn-MOF) for selective and sensitive detection of cadmium ions (Cd2+) in water. This nanohybrid (MoS2@Zn-MOF), synthesized via "bottle around the ship" methodology, exhibited a high-intensity fluorescence emission centered at 430 nm (λEm) (blue) on excitation at 320 nm (λEx). Further, the conjugation of this fluorophore to phosphate-modified cadmium aptamer (Cd-2-2) was achieved through carbodiimide reaction. The hybridization of prepared sensing probe (MoS2@Zn-MOF/Cd-2-2 aptamer) was done with dabcyl-conjugated complementary DNA (cDNA), acting as energy donor-acceptor pair in the fluorescence resonance energy transfer (FRET) system. This hybridization causes the fluorescence quenching of the nanohybrid. In the presence of Cd2+, the aptamer from the fabricated nano-biosensing probe binds to these ions, resulting in release of dabcyl-cDNA oligomer. This release of dabcyl-cDNA oligomer from the sensing probes restores the fluorescence of the nanohybrid. Under optimized conditions (sensing probe/dabcyl-cDNA ratio 1/7, pH 7.4, and temp 28 °C), the sensing probe showed a fast response time of 1 min. The fluorescence intensity of the nanohybrid can be utilized to determine the concentration of Cd2+. The proposed aptasensor achieved highly sensitive detection of Cd2+ with a limit of detection (LOD) of 0.24 ppb over the range of 1 × 10-9 to 1 × 10-4 M along with minimal effects of interferences (e.g., Hg2+, Pb2+, and Zn2+) and good reproducibility. The designed aptasensor based on MoS2@Zn-MOF nanofluorophore offers a highly sensitive and selective approach for rapid screening of metal ions in aqueous environments.

16.
Arch Environ Contam Toxicol ; 86(1): 90-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38169012

RESUMO

Bromoform is the most prominent, relatively long-lived chlorination by-product in condenser effluents from seawater-based power plant cooling systems. There are few reports on the potential toxicity of this trihalomethane to marine phytoplankton. We investigated this using a marine diatom, Chaetoceros lorenzianus as the model organism. The study was conducted by exposing the diatom to bromoform concentrations 0, 50, 100, 150, 250, 500 and 1000 µg/L for exposure time of 3 and 24 h. The mode of action of bromoform was examined using endpoints which include chlorophyll a fluorescence, cell viability by SYTOX® green stain and genotoxicity by comet assay. The relative fluorescence unit and percent viability changed significantly at all concentrations in duration of study. The 24-h IC50 for viability and chlorophyll was estimated to be 255.6 µg/L and 343.5 µg/L, respectively. The tail DNA of 5-20% observed by comet assay indicated low-level DNA damage. Bromoform manages to target cell membrane and internal machinery, DNA and chlorophyll molecule of cell, leading to cause damage at multiple physiological levels. Based on the present data, the current discharge levels of bromoform 50-250 µg/L cause significant impact on the phytoplankton under investigation. However, the impact can be limited under actual field conditions wherein mixing of cooling water with natural water bodies is considered. Nevertheless, more studies are required to understand the toxicological response of organisms to bromoform, so that discharge levels can be continued to be kept within safe levels.


Assuntos
Diatomáceas , Microalgas , Microalgas/metabolismo , Clorofila A , Clorofila/metabolismo , Fitoplâncton , Trialometanos/metabolismo , Água , DNA/metabolismo
17.
Int J Phytoremediation ; 26(8): 1193-1211, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38226539

RESUMO

In this work, green method to synthesize chromium-doped zinc oxide (ZnO) nanorods (NRs) using an aqueous flower extract from Rhododendron arboretum is explored. Herein, chromium-doped ZnO NRs were prepared with different amount of chromium doping, varied as 2-10%. The green synthesized products underwent substantial analysis through X-ray diffraction (XRD), spectroscopic such as ultraviolet spectroscopy(UV-Vis) and scanning electron microscopy (SEM) methods. All samples were found to have hexagonal wurtzite ZnO, with average particle sizes of 52.41, 56.6, 54.44, 53.05, and 56.99 nm, respectively, for 2, 4, 6, 8, and 10% chromium doping in ZnO NRs. The Cr-doped ZnO NRs exhibited remarkable photocatalytic degradation activity of cationic dyes under UV-light, i.e., Malachite Green and Fuchsin Basic with degradation of 99.604 and 99.881%, respectively in 90 min. The reusability tests for these green synthesized Cr-doped ZnO NRs have also been carried out, showed 9-11 cycles with 85% of degradation efficiency. In addition, the Cr-doped ZnO NRs exhibited high selectivity for cationic dyes when experiments against mixture of dyes were performed. Photodegradation kinetics followed the pseudo-first-order model. The flower-extract-stabilized chromium-doped ZnO NRs demonstrated high photocatalytic activity toward malachite green and fuchsin basic dyes, potential material for pollution remediation.


Cr-doped ZnO NRs by green method using flower extract of Rhododendon arboretum were prepared for the first time under ambient reaction conditions.Effect of Dopant i.e. Cr on Photocatalytic activity have been exploited.Selective photocatalytic degradation of cationic dyes i.e. MG, and FB has been achieved in 60­90 minutes.Optimization of reaction condition and various parameters has also been carried out.Recyclability of Cr-doped ZnO NRs was also evaluated and were found to be reusable for 11 cycles for degradation.


Assuntos
Cromo , Flores , Nanotubos , Extratos Vegetais , Rhododendron , Corantes de Rosanilina , Óxido de Zinco , Nanotubos/química , Cromo/química , Corantes de Rosanilina/química , Flores/química , Extratos Vegetais/química , Óxido de Zinco/química , Rhododendron/química , Química Verde , Biodegradação Ambiental , Catálise , Corantes/química , Fotólise , Poluentes Químicos da Água/química
18.
J Environ Manage ; 366: 121909, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39032249

RESUMO

The use of fixed emission factors (EFs), combined with insufficient temporal distribution, leads to substantial uncertainties in current emission inventories for India, the world's second-largest producer and consumer of synthetic N-fertilizers. Our study aimed to improve the NH3 and N2O emission estimates by utilizing crop-specific district-level activity data and refined EFs tailored to Indian conditions. In this study, a comprehensive NH3 and N2O emission inventory (EI) is methodically developed at 0.1° * 0.1° spatial and monthly temporal resolution for the year 2018-19 considering 52 crops. The data for developing this inventory is aggregated through detailed field surveys, conducted across 102 districts of 14 states, and relevant government databases. EFs have been adjusted for the Indian context by refining them to reflect local conditions through consideration of ambient temperature, application rate, and other factors. Further, upon preparing an EI for FA, a spectrum of mitigation strategies are evaluated to assess their effectiveness in reducing emissions. Yearly total NH3 and N2O emissions amount to 3.15 Tg and 138.53 Gg, with urea fertilizer as the dominant contributor accounting for 93.85% and 96.44% of emissions, respectively. Key crops such as rice, wheat, maize, sugarcane, and cotton collectively represent approximately 82% of the total N consumption. The state of Uttar Pradesh emerges as the largest emitter, contributing 706.5 Gg and 25.31 Gg of NH3 and N2O emissions, respectively. Conversely, PB and HR exhibit the highest NH3 emissions per capita. Temporally, NH3 emissions peak in August, while N2O emissions peak in July, with both pollutants reaching their nadir in February. Among the array of mitigation strategies assessed in this study, 'adhering to recommended fertilizer doses' and 'incorporating urease inhibitors' demonstrated substantial potential for reducing emissions. The current study aids policymaking to mitigate the environmental and health impacts of atmospheric emissions from synthetic N-fertilizers. Future researchers can adopt this study as a benchmark to improve Indian FA emission estimates, which helps in promoting sustainable agricultural practices and contributes to climate change mitigation efforts.


Assuntos
Fertilizantes , Fertilizantes/análise , Índia , Produtos Agrícolas , Agricultura , Monitoramento Ambiental/métodos
19.
Inflammopharmacology ; 32(3): 1705-1720, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38528307

RESUMO

Rheumatoid arthritis (RA) stands as an autoimmune disorder characterized by chronic joint inflammation, resulting in profound physiological alterations within the body. Affecting approximately 0.4-1.3% of the global population, this condition poses significant challenges as current therapeutic approaches primarily offer symptomatic relief, with the prospect of complete recovery remaining elusive. This review delves into the contemporary advancements in understanding the pathophysiology, diagnosis, and the therapeutic potential of herbal medicine in managing RA. Notably, early diagnosis during the initial stages emerges as the pivotal determinant for successful recovery post-treatment. Utilizing tools such as Magnetic Resonance Imaging (MRI), anti-citrullinated peptide antibody markers, and radiography proves crucial in pinpointing the diagnosis of RA with precision. Unveiling the intricate pathophysiological mechanisms of RA has paved the way for innovative therapeutic interventions, incorporating plant extracts and isolated phytoconstituents. In the realm of pharmacological therapy for RA, specific disease-modifying antirheumatic drugs have showcased commendable efficacy. However, this conventional approach is not without its drawbacks, as it is often associated with various side effects. The integration of methodological strategies, encompassing both pharmacological and plant-based herbal therapies, presents a promising avenue for achieving substantive recovery. This integrated approach not only addresses the symptoms but also strives to tackle the underlying causes of RA, fostering a more comprehensive and sustainable path towards healing.


Assuntos
Antirreumáticos , Artrite Reumatoide , Medicina Herbária , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/fisiopatologia , Humanos , Antirreumáticos/uso terapêutico , Antirreumáticos/farmacologia , Medicina Herbária/métodos , Fitoterapia/métodos , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
20.
Prep Biochem Biotechnol ; 54(7): 882-895, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38170207

RESUMO

In growing plant population, effect of stress is a perturb issue affecting its physiological, biochemical, yield loss and developmental growth. Protein-L-isoaspartate-O-methyltransferase (PIMT) is a broadly distributed protein repair enzyme which actuate under stressful environment or aging. Stress can mediate damage converting protein bound aspartate (Asp) residues to isoaspartate (iso-Asp). This spontaneous and deleterious conversion occurs at an elevated state of stress and aging. Iso-Asp formation is associated with protein inactivation and compromised cellular survival. PIMT can convert iso-Asp back to Asp, thus repairing and contributing to cellular survival. The present work describes the isolation, cloning, sequencing and expression of PIMT genes of Carica papaya (Cp pimt) and Ricinus communis (Rc pimt) Using gene specific primers, both the pimts were amplified from their respective cDNAs and subsequently cloned in prokaryotic expression vector pProEXHTa. BL21(DE3) strain of E. coli cells were used as expression host. The expression kinetics of both the PIMTs were studied with various concentrations of IPTG and at different time points. Finally, the PIMT supplemented BL21(DE3) cells were evaluated against different stresses in comparison to their counterparts with the empty vector control.


Assuntos
Carica , Proteínas de Plantas , Proteína D-Aspartato-L-Isoaspartato Metiltransferase , Ricinus , Carica/genética , Carica/enzimologia , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/genética , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ricinus/enzimologia , Ricinus/genética , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA