Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 189: 398-409, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34419550

RESUMO

INTRODUCTION: Biofabrication of skin tissue equivalents using 3D bioprinting technology has gained much attention in recent times due to the simplicity, the versatility of the technology and its ability in bioengineering biomimetic tissue histology. The key component being the bioink, several groups are actively working on the development of various bioink formulations for optimal skin tissue construction. METHODS: Here, we present alginate (ALG), gelatin (GEL) and diethylaminoethyl cellulose (DCEL) based bioink formulation and its application in bioprinting and biofabrication of skin tissue equivalents. Briefly, DEAE cellulose powder was dispersed in alginate solution with constant stirring at 60 °C to obtain a uniform distribution of cellulose fibers; this was then mixed with GEL solution to prepare the bioink. The formulation was systematically characterized for its morphological, physical, chemical, rheological, biodegradation and biocompatibility properties. The printability, shape fidelity and cell-laden printing were assessed using the CellInk bioprinter. RESULTS: The bioink proved to be a good printable, non-cytotoxic and stable hydrogel formulation. The primary human fibroblast and keratinocyte-loaded 3D bioprinted constructs showed excellent cell viability, collagen synthesis, skin-specific marker and biomimetic tissue histology. CONCLUSION: The results demonstrated the successful formulation of ALG-GEL-DCEL bioink and its application in the development of human skin tissue equivalents with distinct epidermal-dermal histological features.


Assuntos
Alginatos/farmacologia , DEAE-Celulose/química , Gelatina/farmacologia , Tinta , Microtecnologia , Pele/efeitos dos fármacos , Engenharia Tecidual , Alicerces Teciduais/química , Adulto , Animais , Materiais Biocompatíveis/química , Biomarcadores/metabolismo , Bioimpressão , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Camundongos , Impressão Tridimensional , Reologia , Pele Artificial , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Scientifica (Cairo) ; 2016: 6294030, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27340593

RESUMO

The objective of the present study was to characterize the liver oil extracted from the deep sea shark, Echinorhinus brucus, caught from Central Indian Ocean and to evaluate its cytotoxic effect on neuroblastoma cell line (SHSY-5Y). Characterization of liver oil of Echinorhinus brucus revealed the presence of palmitic acid (15%), oleic acid (12%), stearic acid (8%), docosahexaenoic acid (DHA) (18%), and eicosapentaenoic acid (EPA) (16%). It was also found to be a good source of squalene (38.5%) and fat soluble vitamins such as A, D, and K (vitamin A: 17.08 mg/100 g of oil, vitamin D: 15.04 mg/100 g oil, and vitamin K: 11.45 mg/100 g oil). Since it was found to be rich in essential fatty acids, fat soluble vitamins, and squalene, it can be considered as better dietary supplement. The oil of Echinorhinus brucus also showed high in vitro cytotoxic effect against the human neuroblastoma cell line (SHSY-5Y) and the IC50 value laid between 35 and 45 ng.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA