Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Environ Res ; 260: 119782, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142462

RESUMO

Zeolites possess a microporous crystalline structure, a large surface area, and a uniform pore size. Natural or synthetic zeolites are commonly utilized for adsorbing organic and inorganic compounds from wastewater because of their unique physicochemical properties and cost-effectiveness. The present review work comprehensively revealed the application of zeolites in removing a diverse range of wastewater contaminates, such as dyes, heavy metal ions, and phenolic compounds, within the framework of contemporary research. The present review work offers a summary of the existing literature about the chemical composition of zeolites and their synthesis by different methods. Subsequently, the article provides a wide range of factors to examine the adsorption mechanisms of both inorganic and organic pollutants using natural zeolites and modified zeolites. This review explores the different mechanisms through which zeolites effectively eliminate pollutants from aquatic matrices. Additionally, this review explores that the Langmuir and pseudo-second-order models are the predominant models used in investigating isothermal and kinetic adsorption and also evaluates the research gap on zeolite through scientometric analysis. The prospective efficacy of zeolite materials in future wastewater treatment may be assessed by a comparative analysis of their capacity to adsorb toxic inorganic and organic contaminates from wastewater, with other adsorbents.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Zeolitas , Zeolitas/química , Adsorção , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
2.
J Environ Manage ; 351: 119968, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171130

RESUMO

Inorganic and organic contaminants, such as fertilisers, heavy metals, and dyes, are the primary causes of water pollution. The field of artificial intelligence (AI) has received significant interest due to its capacity to address challenges across various fields. The use of AI techniques in water treatment and desalination has recently shown useful for optimising processes and dealing with the challenges of water pollution and scarcity. The utilization of AI in the water treatment industry is anticipated to result in a reduction in operational expenditures through the lowering of procedure costs and the optimisation of chemical utilization. The predictive capabilities of artificial intelligence models have accurately assessed the efficacy of different adsorbents in removing contaminants from wastewater. This article provides an overview of the various AI techniques and how they can be used in the adsorption of contaminants during the water treatment process. The reviewed publications were analysed for their diversity in journal type, publication year, research methodology, and initial study context. Citation network analysis, an objective method, and tools like VOSviewer are used to find these groups. The primary issues that need to be addressed include the availability and selection of data, low reproducibility, and little proof of uses in real water treatment. The provision of challenges is essential to ensure the prospective success of AI associated with technologies. The brief overview holds importance to everyone involved in the field of water, encompassing scientists, engineers, students, and stakeholders.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Humanos , Inteligência Artificial , Adsorção , Poluentes Químicos da Água/análise , Estudos Prospectivos , Reprodutibilidade dos Testes , Purificação da Água/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-38227254

RESUMO

Most dyes present in wastewater from the textile industry exhibit toxicity and are resistant to biodegradation. Hence, the imperative arises for the environmentally significant elimination of textile dye by utilising agricultural waste. The achievement of this objective can be facilitated through the utilisation of the adsorption mechanism, which entails the passive absorption of pollutants using biochar. In this study, we compare the efficacy of the response surface methodology (RSM), the artificial neural network (ANN), the k-nearest neighbour (kNN), and adaptive neuro-fuzzy inference system (ANFIS) in removing crystal violet (CV) from wastewater. The characterisation of biochar is carried out by scanning electron microscope (SEM) and Fourier transform infrared (FTIR). The impacts of the solution pH, adsorbent dosage, initial dye concentration, and temperature were investigated using a variety of models (RSM, ANN, kNN, and ANFIS). The statistical analysis of errors was conducted, resulting in a maximum removal effectiveness of 97.46% under optimised settings. These conditions included an adsorbent dose of 0.4 mg, a pH of 5, a CV concentration of 40.1 mg/L, and a temperature of 20 °C. The ANN, RSM, kNN, and ANFIS models all achieved R2 0.9685, 0.9618, 0.9421, and 0.8823, respectively. Even though all models showed accuracy in predicting the removal of CV dye, it was observed that the ANN model exhibited greater accuracy compared to the other models.

4.
Plant Pathol J ; 40(1): 48-58, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326958

RESUMO

The oldest and most extensively cultivated form of millet, known as pearl millet (Pennisetum glaucum (L.) R. Br. Syn. Pennisetum americanum (L.) Leeke), is raised over 312.00 lakh hectares in Asian and African countries. India is regarded as the significant hotspot for pearl millet diversity. In the Indian state of Haryana, where pearl millet is grown, a new and catastrophic bacterial disease known as stem rot of pearl millet spurred by the bacterium Klebsiella aerogenes (formerly Enterobacter) was first observed during fall 2018. The disease appears in form of small to long streaks on leaves, lesions on stem, and slimy rot appearance of stem. The associated bacterium showed close resemblance to Klebsiella aerogenes that was confirmed by a molecular evaluation based on 16S rDNA and gyrA gene nucleotide sequences. The isolates were also identified to be Klebsiella aerogenes based on biochemical assays, where Klebsiella isolates differed in D-trehalose and succinate alkalisation tests. During fall 2021-2023, the disease has spread all the pearl millet-growing districts of the state, extending up to 70% disease incidence in the affected fields. The disease is causing considering grain as well as fodder losses. The proposed scale, consisting of six levels (0-5), is developed where scores 0, 1, 2, 3, 4, and 5 have been categorized as highly resistant, resistant, moderately resistant, moderately susceptible, susceptible, and highly susceptible disease reaction, respectively. The disease cycle, survival of pathogen, and possible losses have also been studied to understand other features of the disease.

5.
Chemosphere ; 344: 140262, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37793550

RESUMO

The presence of dye pollutants in industrial wastewater poses significant environmental and health risks, necessitating effective treatment methods. The optimal adsorption treatment of methylene blue (MB) and crystal violet (CV) dye-simulated wastewater utilising Saccharum officinarum L presents a key challenge in the selection of appropriate modelling approaches. While RSM and ANN models are frequently used, there is a noticeable knowledge gap when it comes to evaluating their relative strengths and weaknesses in this context. The study compared the predictive abilities of response surface methodology (RSM) and artificial neural network (ANN) for the adsorption treatment of MB and CV dye-simulated wastewater using Saccharum officinarum L. The process experimental variables were modelled and predicted using a three-layer artificial neural network trained using the Levenberg-Marquard backpropagation algorithm and 30 central composite designs (CCD). The adsorption study used a specific mechanism, which led to noteworthy maximum removals of 98.3% and 98.2% for dyes (MB and CV), respectively. The RSM model achieved an impressive R2 of 0.9417, while the ANN model achieved 0.9236 in MB. Adsorption is commonly used to remove colour from many different materials. Saccharum officinarum L., a byproduct of sugarcane processing, has shown potential as an efficient and ecological adsorbent in this environment. The purpose of this study is to evaluate sugarcane bagasse's potential as an adsorbent for the removal of dyes MB and CV from industrial wastewater, providing a long-term strategy for reducing dye pollution. Due to its beneficial economic and environmental characteristics, the Saccharum officinarum L. adsorbent has prompted research into sustainable resources with low pollutant indices.


Assuntos
Poluentes Ambientais , Saccharum , Poluentes Químicos da Água , Violeta Genciana , Águas Residuárias , Azul de Metileno/química , Corantes , Biomassa , Celulose , Cinética , Redes Neurais de Computação , Adsorção , Concentração de Íons de Hidrogênio
6.
Sci Rep ; 13(1): 8574, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237060

RESUMO

A major environmental problem on a global scale is the contamination of water by dyes, particularly from industrial effluents. Consequently, wastewater treatment from various industrial wastes is crucial to restoring environmental quality. Dye is an important class of organic pollutants that are considered harmful to both people and aquatic habitats. The textile industry has become more interested in agricultural-based adsorbents, particularly in adsorption. The biosorption of Methylene blue (MB) dye from aqueous solutions by the wheat straw (T. aestivum) biomass was evaluated in this study. The biosorption process parameters were optimized using the response surface methodology (RSM) approach with a face-centred central composite design (FCCCD). Using a 10 mg/L concentration MB dye, 1.5 mg of biomass, an initial pH of 6, and a contact time of 60 min at 25 °C, the maximum MB dye removal percentages (96%) were obtained. Artificial neural network (ANN) modelling techniques are also employed to stimulate and validate the process, and their efficacy and ability to predict the reaction (removal efficiency) were assessed. The existence of functional groups, which are important binding sites involved in the process of MB biosorption, was demonstrated using Fourier Transform Infrared Spectroscopy (FTIR) spectra. Moreover, a scan electron microscope (SEM) revealed that fresh, shiny particles had been absorbed on the surface of the T. aestivum following the biosorption procedure. The bio-removal of MB from wastewater effluents has been demonstrated to be possible using T. aestivum biomass as a biosorbent. It is also a promising biosorbent that is economical, environmentally friendly, biodegradable, and cost-effective.


Assuntos
Triticum , Poluentes Químicos da Água , Humanos , Biomassa , Termodinâmica , Azul de Metileno/química , Concentração de Íons de Hidrogênio , Corantes , Poluentes Químicos da Água/análise , Cinética , Adsorção
7.
Sci Total Environ ; 732: 139297, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32408041

RESUMO

The Severe Acute Respiratory Syndrome-Coronavirus Disease 2019 (COVID-19) pandemic caused by a novel coronavirus known as SARS-CoV-2 has caused tremendous suffering and huge economic losses. We hypothesized that extreme measures of partial-to-total shutdown might have influenced the quality of the global environment because of decreased emissions of atmospheric pollutants. We tested this hypothesis using satellite imagery, climatic datasets (temperature, and absolute humidity), and COVID-19 cases available in the public domain. While the majority of the cases were recorded from Western countries, where mortality rates were strongly positively correlated with age, the number of cases in tropical regions was relatively lower than European and North American regions, possibly attributed to faster human-to-human transmission. There was a substantial reduction in the level of nitrogen dioxide (NO2: 0.00002 mol m-2), a low reduction in CO (<0.03 mol m-2), and a low-to-moderate reduction in Aerosol Optical Depth (AOD: ~0.1-0.2) in the major hotspots of COVID-19 outbreak during February-March 2020, which may be attributed to the mass lockdowns. Our study projects an increasing coverage of high COVID-19 hazard at absolute humidity levels ranging from 4 to 9 g m-3 across a large part of the globe during April-July 2020 due to a high prospective meteorological suitability for COVID-19 spread. Our findings suggest that there is ample scope for restoring the global environment from the ill-effects of anthropogenic activities through temporary shutdown measures.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , COVID-19 , Humanos , Estudos Prospectivos , SARS-CoV-2 , Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA