Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Chemistry ; 29(56): e202301622, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37439155

RESUMO

Herein, we report on highly Ba2+ selective fluorescence sensing in water by a fluorescent probe consisting of a benzo-21-crown-7 as a Ba2+ binding unit (ionophore) and a tetramethylated BODIPY fluorophore as a fluorescence reporter. This fluorescent probe showed a Ba2+ induced fluorescence enhancement (FE) by a factor of 12±1 independently of the pH value and a high Ba2+ sensitivity with a limit of detection (LOD) of (17.2±0.3) µM. Moreover, a second fluorescent probe consisting of the same BODIPY fluorophore, but a benzo-18-crown-6 as a cation-responsive binding moiety, showed an even higher FE upon Ba2+ complexation by a factor of 85±3 and a lower LOD of (13±3) µM albeit a lower Ba2+ selectivity. The fluorescence sensing mechanism of Ba2+ was further investigated by time-resolved fluorescence as well as transient absorption spectroscopy (TAS) and it turned out that within these probes a blocking of a photoinduced electron transfer (PET) by Ba2+ is very likely responsible for the FE.

2.
Photochem Photobiol Sci ; 21(2): 235-245, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35001348

RESUMO

We present a systematic study on the properties of Na(Y,Gd)F4-based upconverting nanoparticles (UCNP) doped with 18% Yb3+, 2% Tm3+, and the influence of Gd3+ (10-50 mol% Gd3+). UCNP were synthesized via the solvothermal method and had a range of diameters within 13 and 50 nm. Structural and photophysical changes were monitored for the UCNP samples after a 24-month incubation period in dry phase and further redispersion. Structural characterization was performed by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) as well as dynamic light scattering (DLS), and the upconversion luminescence (UCL) studies were executed at various temperatures (from 4 to 295 K) using time-resolved and steady-state spectroscopy. An increase in the hexagonal lattice phase with the increase of Gd3+ content was found, although the cubic phase was prevalent in most samples. The Tm3+-luminescence intensity as well as the Tm3+-luminescence decay times peaked at the Gd3+ concentration of 30 mol%. Although the general upconverting luminescence properties of the nanoparticles were preserved, the 24-month incubation period lead to irreversible agglomeration of the UCNP and changes in luminescence band ratios and lifetimes.


Assuntos
Luminescência , Nanopartículas , Fluoretos , Microscopia Eletrônica de Transmissão , Nanopartículas/química
3.
J Phys Chem A ; 125(20): 4380-4389, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33983019

RESUMO

A major hindrance in utilizing uranyl(VI) luminescence as a standard analytical tool, for example, in environmental monitoring or nuclear industries, is quenching by other ions such as halide ions, which are present in many relevant matrices of uranyl(VI) speciation. Here, we demonstrate through a combination of time-resolved laser-induced fluorescence spectroscopy, transient absorption spectroscopy, and quantum chemistry that coordinating solvent molecules play a crucial role in U(VI) halide luminescence quenching. We show that our previously suggested quenching mechanism based on an internal redox reaction of the 1:2-uranyl-halide-complex holds also true for bromide-induced quenching of uranyl(VI). By adopting specific organic solvents, we were able to suppress the separation of the oxidized halide ligand X2·- and the formed uranyl(V) into fully solvated ions, thereby "reigniting" U(VI) luminescence. Time-dependent density functional theory calculations show that quenching occurs through the outer-sphere complex of U(VI) and halide in water, while the ligand-to-metal charge transfer is strongly reduced in acetonitrile.

4.
J Phys Chem A ; 124(22): 4345-4353, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32392418

RESUMO

The so-called DBD ([1,3]dioxolo[4,5-f][1,3]benzodioxole) dyes are a new class of fluorescent dyes, with tunable photophysical properties like absorption, fluorescence lifetime, and Stokes shift. With the development of sulfur based DBDs, this dye class is extended even further for possible applications in spectroscopy and microscopy. In this paper we are investigating the basic photophysical properties and their implications for future applications for S4-DBD as well as O4-DBD. On the basis of time-resolved laser fluorescence spectroscopy, transient absorption spectroscopy, and UV/vis-spectroscopy, we determined the rate constants of the radiative and nonradiative deactivation processes as well as the energy of respective electronic states involved in the electronic deactivation of S4-DBD and of O4-DBD. For S4-DBD we unraveled the triplet formation with intersystem crossing quantum yields of up to 80%. By TD-DFT calculations we estimated a triplet energy of around 13500-14700 cm-1 depending on the DBD dye and solvent. Through solvent dependent measurements, we found quadrupole moments in the range of 2 B.

5.
J Phys Chem A ; 124(52): 11017-11024, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33337145

RESUMO

9,10-substituted anthracenes are known for their useful optical properties like fluorescence, which makes them frequently used probes in sensing applications. In this article, we investigate the fundamental photophysical properties of three pyridyl-substituted variants. The nitrogen atoms in the pyridinium six-membered rings are located in the ortho-, meta-, and para-positions in relation to the anthracene core. Absorption, fluorescence, and transient absorption measurements were carried out and were complemented by theoretical calculations. We monitored the photophysics of the anthracene derivatives in chloroform and water investigating the protonated as well as their nonprotonated forms. We found that the optical properties of the nonprotonated forms are strongly determined by the anthracene chromophore, with only small differences to other 9,10-substituted anthracenes, for example diphenyl anthracene. In contrast, protonation leads to a strong decrease in fluorescence intensity and lifetime. Transient absorption measurements and theoretical calculations revealed the formation of a charge-transfer state in the protonated chromophores, where electron density is shifted from the anthracene moiety toward the protonated pyridyl substituents. While the para- and ortho-derivatives' charge transfer is still moderately fluorescent, the meta-derivative is affected much stronger and shows nearly no fluorescence. This nitrogen-atom-position-dependent sensitivity to hydronium activity makes a combination of these fluorophores very attractive for pH-sensing applications covering a broadened pH range.

6.
J Phys Chem A ; 124(24): 4972-4983, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32450696

RESUMO

Gadolinium-doped ceria or gadolinium-stabilized ceria (GDC) is an important technical material due to its ability to conduct O2- ions, e.g., used in solid oxide fuel cells operated at intermediate temperature as an electrolyte, diffusion barrier, and electrode component. We have synthesized Ce1-xGdxO2-y:Eu3+ (0 ≤ x ≤ 0.4) nanoparticles (11-15 nm) using a scalable spray pyrolysis method, which allows the continuous large-scale technical production of such materials. Introducing Eu3+ ions in small amounts into ceria and GDC as spectroscopic probes can provide detailed information about the atomic structure and local environments and allows us to monitor small structural changes. This study presents a novel approach to structurally elucidate europium-doped Ce1-xGdxO2-y:Eu3+ nanoparticles by way of Eu3+ spectroscopy, processing the spectroscopic data with the multiway decomposition method parallel factor (PARAFAC) analysis. In order to perform the deconvolution of spectra, data sets of excitation wavelength, emission wavelength, and time are required. Room temperature, time-resolved emission spectra recorded at λex = 464 nm show that Gd3+ doping results in significantly altered emission spectra compared to pure ceria. The PARAFAC analysis for the pure ceria samples reveals a high-symmetry species (which can also be probed directly via the CeO2 charge transfer band) and a low-symmetry species. The GDC samples yield two low-symmetry spectra in the same experiment. High-resolution emission spectra recorded under cryogenic conditions after probing the 5D0-7F0 transition at λex = 575-583 nm revealed additional variation in the low-symmetry Eu3+ sites in pure ceria and GDC. The total luminescence spectra of CeO2-y:Eu3+ showed Eu3+ ions located in at least three slightly different coordination environments with the same fundamental symmetry, whereas the overall hypsochromic shift and increased broadening of the 5D0-7F0 excitation in the GDC samples, as well as the broadened spectra after deconvolution point to less homogeneous environments. The data of the Gd3+-containing samples indicates that the average charge density around the Eu3+ ions in the lattice is decreased with increasing Gd3+ and oxygen vacancy concentration. For reference, the Judd-Ofelt parameters of all spectra were calculated. PARAFAC proves to be a powerful tool to analyze lanthanide spectra in crystalline solid materials, which are characterized by numerous Stark transitions and where measurements usually yield a superposition of different contributions to any given spectrum.

7.
J Phys Chem A ; 123(22): 4717-4726, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31067057

RESUMO

A new generation of wavelength-tunable, fluorescent dyes, so-called DBD ([1,3]dioxolo[4,5- f][1,3]benzodioxole) dyes, were developed a few years ago, and they showed great potential as probes, for example, for fluorescence microscopy. However, their photophysics is not fully explored and leaves open questions regarding their large fluorescence Stokes shifts and sensitivity to solvent conditions of differently substituted DBD dyes. To improve the understanding of the influence of the substitution pattern of the DBD dyes on their respective photophysics, transient absorption spectroscopy (TAS) was used, that is, a pump-probe experiment on the femtosecond timescale. TAS allows measurements of excited states, ground state recovery, solvent relaxation, and fluorescence properties on time scales of up to several nanoseconds. Two different DBD dye samples were investigated: acyl- and ester-substituted DBD dyes. Experiments were carried out in solvents with different polarities using different excitation energies and at different viscosities. Based on the experimental data and theoretical calculations, we were able to determine the conformational changes of the molecule due to electronic excitation and were able to investigate solvent relaxation processes for both types of DBD dyes. By generalizing the theory for quadrupole-induced solvent relaxation developed by Togashi et al., we derived quadrupole moments of both molecules in the ground and excited state. Our data showed differences in the binding of polar solvent molecules to the dyes depending on the substituent on the DBD dye. In the case of water as the solvent, an additional efficient quenching process in the electronically excited state was revealed, which was indicated by the observation of solvated electrons in the TAS signals.

8.
Bioconjug Chem ; 29(1): 203-214, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29268011

RESUMO

Immunochemical analytical methods are very successful in clinical diagnostics and are nowadays also emerging in the control of food as well as monitoring of environmental issues. Among the different immunoassays, luminescence based formats are characterized by their outstanding sensitivity making this format especially attractive for future applications. The need for multiparameter detection capabilities calls for a tool box of dye labels in order to transduce the biochemical reaction into an optically detectable signal. Here, in a multiparameter approach each analyte may be detected by a different dye with a unique emission color (covering the blue to red spectral range) or a unique luminescence decay kinetics. In the case of a competitive immunoassay format for each of the different dye labels an individual antibody would be needed. In the present paper a slightly modified approach is presented using a 7-aminocoumarin unit as the basic antigen against which highly specific antibodies were generated. Leaving the epitope region in the dyes unchanged but introducing a side group in positon 3 of the coumarin system allowed us to tune the optical properties of the coumarin dyes without the necessity of new antibody generation. Upon modification of the parent coumarin unit the full spectral range from blue to deep red was accessed. In the manuscript the photophysical characterization of the coumarin derivatives and their corresponding immunocomplexes with two highly specific antibodies is presented. The coumarin dyes and their immunocomplexes were characterized by steady-state and time-resolved absorption as well as emission spectroscopy. Moreover, fluorescence depolarization measurements were carried out to complement the data stressing the different binding modes of the two antibodies. The binding modes were evaluated using the photophysics of 7-aminocoumarins and how it was affected in the respective immunocomplexes, namely, the formation of the intramolecular charge transfer (ICT) as well as the twisted intramolecular charge transfer (TICT). In contrast to other antibody-dye pairs reported a distinct fluorescence enhancement upon formation of the antibody-dye complex up to a factor of 50 was found. Because of the easy emission color tuning by tailoring the coumarin substitution for the antigen binding in nonrelevant position 3 of the parent molecule, a dye tool box is on hand which can be used in the construction of competitive multiparameter fluorescence enhancement immunoassays (FenIA).


Assuntos
Anticorpos Monoclonais/análise , Cumarínicos/química , Corantes Fluorescentes/química , Fluorimunoensaio/métodos , Ressonância de Plasmônio de Superfície/métodos , Fluorescência , Polarização de Fluorescência/métodos , Imunoglobulina G/análise
9.
J Fluoresc ; 28(5): 1225-1237, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30145784

RESUMO

In the study a dyad (C6 probe), constructed of two dyes with highly different hydrophobicities, was investigated by steady-state and time-resolved spectroscopic techniques in chloroform, methanol, and in phospholipid vesicles, respectively. The dyad was built on two dyes: the lipophilic benzo[a]pyrene (BaP) and the hydrophilic sulforhodamine B (SRB). The dyes were linked via a short, but flexible alkyl chain (six C-atoms). Based on their spectroscopic properties, BaP and SRB showed a very efficient non-radiative resonance energy transfer in solution. Incorporation into a lipid bilayer limited the relative flexibility (degree of freedom) between donor and acceptor and was used for the investigation of fundamental photophysical aspects (especially of FRET) as well as to elucidate the potential of the dyad to probe the interface of vesicles (or cells). The location of the two dyes in vesicles and their respective accessibility for interactions with dye-specific antibodies was investigated. Based on the alteration of the anisotropy, on the rotational correlation time as well as on the diffusion coefficient the incorporation of the C6 probe into the vesicles was evaluated. Especially the limitation in the relative movements of the two dyes was considered and used to differentiate between potential parameters, that influence the energy transfer in the dyad. Transient absorption spectroscopy (TAS) and pulsed-interleave single molecule fluorescence experiments were performed to better understand the intramolecular interactions in the dyad. Finally, in a showcase for a biosensing application of the dyads, the binding of an SRB-specific antibody was investigated when the dyad was incorporated in vesicles. Graphical Abstract.


Assuntos
Membrana Celular/química , Corantes Fluorescentes/química , Benzo(a)pireno/química , Interações Hidrofóbicas e Hidrofílicas , Fosfolipídeos/química , Rodaminas/química , Espectrometria de Fluorescência
10.
J Phys Chem A ; 122(35): 6970-6977, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30095911

RESUMO

For the only water coordinated "free" uranyl(VI) aquo ion in perchlorate solution we identified and assigned several different excited states and showed that the 3Δ state is the luminescent triplet state from transient absorption spectroscopy. With additional data from other spectroscopic methods (TRLFS, UV/vis) we generated a detailed Jablonski diagram and determined rate constants for several state transitions, like the inner conversion rate constant from the 3Φ state to the 3Δ state transition to be 0.35 ps-1. In contrast to luminescence measurements, it was possible to observe the highly quenched uranyl(VI) ion in highly concentrated chloride solution by TAS and we were able to propose a dynamic quenching mechanism, where chloride complexation is followed by the charge transfer from the excited state uranyl(VI) to chloride. This proposed quenching route is supported by TD-DFT calculations.

11.
J Fluoresc ; 27(3): 861-868, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28091783

RESUMO

High oxygen permeable [poly(TMSP)] nanofibers incorporating porphyrin macrocycle as luminescence indicators were prepared by electrospinning technique. The porphyrins involves were modified by i) introducing phenylacetylide substituents on the para position of the phenyl moieties and ii) varying the metal centers [Pt(II) or Pd(II)] of the meso-tetrakisphenylporphyrins. A set of nanofibers; (Pt-TPP)NF, (Pd-TPP)NF, (Pt-TPA)NF and (Pd-TPA)NF were obtained to study their structure-activity relationship toward oxygen. The lifetime-based technique was privileged to take advantage of their long-lived phosphorescent properties. A two-fold enhancement was observed for (Pt-TPA)NF and (Pd-TPA)NF compared to (Pt-TPP)NF and (Pd-TPP)NF demonstrating the positive effect of the phenylacetylide moieties on the lifetime. Also, Silver nanoparticles were included in nanofibers to investigate their influence on lifetime-based oxygen sensitivity, showing that the presence of AgNPs only affects (Pd-TPA)NF.

12.
Mol Pharm ; 13(5): 1608-17, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27050158

RESUMO

Nowadays, the encapsulation of therapeutic compounds in so-called carrier systems is a very smart method to achieve protection as well as an improvement of their temporal and spatial distribution. After the successful transport to the point of care, the delivery has to be released under controlled conditions. To monitor the triggered release from the carrier, we investigated different fluorescent probes regarding their response to the pH-induced collapse of pH-sensitive liposomes (pHSLip), which occurs when the environmental pH falls below a critical value. Depending on the probe, the fluorescence decay time as well as fluorescence anisotropy can be used equally as key parameters for monitoring the collapse. Especially the application of a fluorescein labeled fatty acid (fPA) enabled the monitoring of the pHSLips collapse and the pH of its microenvironment simultaneously without interference. Varying the pH in the range of 3 < pH < 9, anisotropy data revealed the critical pH value at which the collapse of the pHSLips occurs. Complementary methods, e.g., fluorescence correlation spectroscopy and dynamic light scattering, supported the analysis based on the decay time and anisotropy. Additional experiments with varying incubation times yielded information on the kinetics of the liposomal collapse.


Assuntos
Portadores de Fármacos/química , Corantes Fluorescentes/química , Lipossomos/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Ácidos Graxos/química , Fluoresceínas/química , Fluorescência , Concentração de Íons de Hidrogênio , Cinética , Espectrometria de Fluorescência/métodos
13.
Langmuir ; 32(27): 6928-39, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27295095

RESUMO

Encapsulation of diagnostic and therapeutic compounds in transporters improves their delivery to the point of need. An even more efficient treatment of diseases can be achieved using carriers with targeting or protecting moieties. In the present work, we investigated micellar and liposomal nanocarriers modified with fluorescein, peptides, and polymers that are covalently bound to fatty acids or phospholipids to ensure a self-driven incorporation into the micelles or liposomes. First, we characterized the photophysics of the fluorescent probes in the absence and in the presence of nanocarriers. Changes in the fluorescence decay time, quantum yield, and intensity of a fluorescein-labeled fatty acid (fluorescein-labeled palmitic acid [fPA]) and a fluorescein-labeled lipopeptide (P2fA2) were found. By exploiting these changes, we investigated a lipopeptide (P2A2 as an uptake-mediating unit) in combination with different nanocarriers (micelles and liposomes) and determined the corresponding association constant Kass values, which were found to be very high. In addition, the mobility of fPA was exploited using fluorescence correlation spectroscopy (FCS) and fluorescence depolarization (FD) experiments to characterize the nanocarriers. Cellular uptake experiments with mouse brain endothelial cells provided information on the uptake behavior of liposomes modified by uptake-mediating P2A2 and revealed differences in the uptake behavior between pH-sensitive and pH-insensitive liposomes.


Assuntos
Células Endoteliais/metabolismo , Fluoresceína/química , Lipopeptídeos , Nanoestruturas/química , Ácido Palmítico/química , Animais , Linhagem Celular , Células Endoteliais/citologia , Concentração de Íons de Hidrogênio , Lipopeptídeos/química , Lipopeptídeos/farmacocinética , Lipopeptídeos/farmacologia , Lipossomos , Camundongos
14.
J Biol Chem ; 289(39): 26817-26828, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25092288

RESUMO

The disease risk and age of onset of Huntington disease (HD) and nine other repeat disorders strongly depend on the expansion of CAG repeats encoding consecutive polyglutamines (polyQ) in the corresponding disease protein. PolyQ length-dependent misfolding and aggregation are the hallmarks of CAG pathologies. Despite intense effort, the overall structure of these aggregates remains poorly understood. Here, we used sensitive time-dependent fluorescent decay measurements to assess the architecture of mature fibrils of huntingtin (Htt) exon 1 implicated in HD pathology. Varying the position of the fluorescent labels in the Htt monomer with expanded 51Q (Htt51Q) and using structural models of putative fibril structures, we generated distance distributions between donors and acceptors covering all possible distances between the monomers or monomer dimensions within the polyQ amyloid fibril. Using Monte Carlo simulations, we systematically scanned all possible monomer conformations that fit the experimentally measured decay times. Monomers with four-stranded 51Q stretches organized into five-layered ß-sheets with alternating N termini of the monomers perpendicular to the fibril axis gave the best fit to our data. Alternatively, the core structure of the polyQ fibrils might also be a zipper layer with antiparallel four-stranded stretches as this structure showed the next best fit. All other remaining arrangements are clearly excluded by the data. Furthermore, the assessed dimensions of the polyQ stretch of each monomer provide structural evidence for the observed polyQ length threshold in HD pathology. Our approach can be used to validate the effect of pharmacological substances that inhibit or alter amyloid growth and structure.


Assuntos
Amiloide/química , Fluorescência , Doença de Huntington , Modelos Moleculares , Peptídeos/química , Amiloide/metabolismo , Humanos , Proteína Huntingtina , Proteínas do Tecido Nervoso , Peptídeos/genética , Peptídeos/metabolismo , Estrutura Secundária de Proteína
15.
Anal Bioanal Chem ; 407(12): 3313-23, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25711988

RESUMO

Fluorescence labels, for example fluorescein or rhodamin derivatives, are widely used in bioanalysis applications including lateral-flow assays, PCR, and fluorescence microscopy. Depending on the layout of the particular application, fluorescence quenching or enhancement may be desired as the detection principle. Especially for multiplexed applications or high-brightness requirements, a tunable fluorescence probe can be beneficial. The alterations in the photophysics of rhodamine derivatives upon binding to two different anti-TAMRA antibodies were investigated by absorption and fluorescence-spectroscopy techniques, especially determining the fluorescence decay time and steady-state and time-resolved fluorescence anisotropy. Two monoclonal anti-TAMRA antibodies were generated by the hybridoma technique. Although surface-plasmon-resonance measurements clearly proved the high affinity of both antibodies towards 5-TAMRA, the observed effects on the fluorescence of rhodamine derivatives were very different. Depending on the anti-TAMRA antibody either a strong fluorescence quenching (G71-DC7) or a distinct fluorescence enhancement (G71-BE11) upon formation of the immune complex was observed. Additional rhodamine derivatives were used to gain further information on the binding interaction. The data reveal that such haptens as 5-TAMRA could generate different paratopes with equal binding affinities but different binding interactions, which provide the opportunity to adapt bioanalysis methods including immunoassays for optimized detection principles for the same hapten depending on the specific requirements.


Assuntos
Anticorpos Monoclonais/imunologia , Rodaminas/imunologia , Espectrometria de Fluorescência/métodos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Corantes Fluorescentes/química , Camundongos Endogâmicos BALB C , Sondas Moleculares/química , Rodaminas/química , Rodaminas/metabolismo , Ressonância de Plasmônio de Superfície
16.
Anal Bioanal Chem ; 406(14): 3387-94, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24481618

RESUMO

Characterization of interactions between antigens and antibodies is of utmost importance both for fundamental understanding of the binding and for development of advanced clinical diagnostics. Here, fluorescence line-narrowing (FLN) spectroscopy was used to study physicochemical interactions between 3-hydroxybenzo[a]pyrene (3OH-BaP, as antigen) and a variety of solvent matrices (as model systems) or anti-polycyclic aromatic hydrocarbon antibodies (anti-PAH). We focused the studies on the specific physicochemical interactions between 3OH-BaP and different, previously obtained, monoclonal and recombinant anti-PAH antibodies. Control experiments performed with non-binding monoclonal antibodies and bovine serum albumin (BSA) indicated that nonspecific interactions did not affect the FLN spectrum of 3OH-BaP. The spectral positions and relative intensities of the bands in the FLN spectra are highly dependent on the molecular environment of the 3OH-BaP. The FLN bands correlate with different vibrational modes of 3OH-BaP which are affected by interactions with the molecular environment (π-π interactions, H-bonding, or van-der-Waals forces). Although the analyte (3OH-BaP) was the same for all the antibodies investigated, different binding interactions could be identified from the FLN spectra on the basis of structural flexibility and conformational multiplicity of the antibodies' paratopes.


Assuntos
Benzo(a)pireno/análise , Imunoensaio , Hidrocarbonetos Policíclicos Aromáticos/química , Animais , Anticorpos/química , Anticorpos Monoclonais/química , Benzo(a)pireno/química , Bovinos , Haptenos/química , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Ligação Proteica , Pirenos/urina , Soroalbumina Bovina , Solventes/química , Espectrometria de Fluorescência , Espectrofotometria Infravermelho , Análise Espectral Raman , Eletricidade Estática
17.
RSC Adv ; 14(20): 14091-14099, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38686292

RESUMO

The emergence of biological ligand as an alternative to chemical ligands enables a sustainable lanthanide extraction route. In this study, a peptide originating from the loop of domain 4 calmodulin (EF4) was synthesized and the interaction with europium ions was monitored using time resolved laser fluorescence spectroscopy (TRLFS). Despite being retracted from its full protein structure, the twelve amino acids of calmodulin-EF4 showed binding to europium. Europium-peptide complex formation was evident by an increase in decay time from 110 to 187 µs. The spectra of europium bound to peptide can be easily distinguished from the free europium ion as the 5D0 → 7F2 peak intensifies. When europium bound to the peptide-polymer conjugate, the decay time was further increased to 259 µs. This suggests that lanthanide binding can be enhanced by immobilizing the short peptide into a polymer matrix. The europium-peptide/conjugate bond was reversible, triggered by pH, promoting peptide reusability. Due to the fact that the study was conducted exclusively in water, it suggests minimal use of chemicals is possible while maintaining peptide affinity. This makes the calmodulin-EF4 peptide an ideal candidate as biological ligand. This study lays the groundwork for developing a peptide-based filter material for lanthanide separation.

18.
RSC Adv ; 13(50): 35445-35456, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38058559

RESUMO

Lanthanide based ceria nanomaterials are important practical materials due to the redox properties that are useful in the avenues pertaining to technology and life sciences. Sub 10 nm spherical and highly monodisperse Ce1-xYbxO2-y (0.04 ≤ x ≤ 0.22) nanoparticles were synthesized by thermal decomposition, annealed separately at 773 K and 1273 K for 2 hours and characterized. Elemental mapping for Yb3+ doped ceria nanoparticles shows homogeneous distribution of Yb3+ atoms in the ceria with low Yb3+ content annealed at 773 K and 1273 K for 2 hours. However, clusters are observed for 773 K annealed ceria samples with high concentration of Yb3+. These clusters are not detected in 1273 K annealed nanomaterials. Introducing small amounts of Yb3+ ions into the ceria lattice as spectroscopic probes can provide detailed information about the atomic structure and local environments allowing the monitoring of small structural changes, such as clustering. The emission spectra observed at room temperature and at 4 K have a manifold of bands that corresponds to the 2F5/2 → 2F7/2 transition of Yb3+ ions. Some small shifts are observed in the Stark splitting pattern depending on the sample and the annealing conditions. The deconvolution by PARAFAC analysis yielded luminescence decay kinetics as well as the associated luminescence spectra of three species for each of the low Yb3+ doped ceria samples annealed at 773 K and one species for the 1273 K annealed samples. However, the ceria samples with high concentration of Yb3+ annealed at the two temperatures showed only one species with lower decay times as compared to the low Yb3+ doped ceria samples.

19.
J Phys Chem A ; 116(4): 1176-82, 2012 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-22217075

RESUMO

In the natural environment humic substances (HS) represent a major factor determining the speciation of metal ions, e.g., in the context of radionuclide migration. Here, due to their intrinsic sensitivity and selectivity, spectroscopic methods are often applied, requiring a fundamental understanding of the photophysical processes present in such HS-metal complexes. Complexes with different metal ions were studied using 2-hydroxybenzoic acid (2HB) as a model compound representing an important part of the chelating substructures in HS. In flash photolysis experiments under direct excitation of 2HB in the absence and the presence of different lanthanide ions, the generation and the decay of the 2HB triplet state, of the phenoxy radical, and of the solvated electron were monitored. Depending on the lanthanide ion different intracomplex processes were observed for these transient species including energy migration to and photoreduction of the lanthanide ion. The complexity of the intracomplex photophysical processes even for small molecules such as 2HB underlines the necessity to step-by-step approach the photochemical reactivity of HS by using suitable model compounds.


Assuntos
Elementos da Série dos Lantanídeos/química , Ácido Salicílico/química , Água/química , Fluorescência , Íons/química , Fotólise , Espectrofotometria Ultravioleta
20.
Bioconjug Chem ; 22(12): 2546-57, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22073970

RESUMO

In this work, the photophysical properties of two oxazine dyes (ATTO 610 and ATTO 680) covalently attached via a C6-amino linker to the 5'-end of short single-stranded as well as double-stranded DNA (ssDNA and dsDNA, respectively) of different lengths were investigated. The two oxazine dyes were chosen because of the excellent spectral overlap, the high extinction coefficients, and the high fluorescence quantum yield of ATTO 610, making them an attractive Förster resonance energy transfer (FRET) pair for bioanalytical applications in the far-red spectral range. To identify possible molecular dye-DNA interactions that cause photophysical alterations, we performed a detailed spectroscopic study, including time-resolved fluorescence anisotropy and fluorescence correlation spectroscopy measurements. As an effect of the DNA conjugation, the absorption and fluorescence maxima of both dyes were bathochromically shifted and the fluorescence decay times were increased. Moreover, the absorption of conjugated ATTO 610 was spectrally broadened, and a dual fluorescence emission was observed. Steric interactions with ssDNA as well as dsDNA were found for both dyes. The dye-DNA interactions were strengthened from ssDNA to dsDNA conjugates, pointing toward interactions with specific dsDNA domains (such as the top of the double helix). Although these interactions partially blocked the dye-linker rotation, a free (unhindered) rotational mobility of at least one dye facilitated the appropriate alignment of the transition dipole moments in doubly labeled ATTO 610/ATTO 680-dsDNA conjugates for the performance of successful FRET. Considering the high linker flexibility for the determination of the donor-acceptor distances, good accordance between theoretical and experimental FRET parameters was obtained. The considerably large Förster distance of ~7 nm recommends the application of this FRET pair not only for the detection of binding reactions between nucleic acids in living cells but also for monitoring interactions of larger biomolecules such as proteins.


Assuntos
Corantes/química , DNA/química , Transferência Ressonante de Energia de Fluorescência , Oligonucleotídeos/química , Oxazinas/química , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA