RESUMO
Freshwater depletion is an alarm for finding an eco-friendly solution to treat wastewater for drinking and domestic applications. Though several methods like chlorination, filtration, and coagulation-sedimentation are conventionally employed for water treatment, these methods need to be improved as they are not environmentally friendly, rely on chemicals, and are ineffective for all kinds of pollutants. These problems can be addressed by employing an alternative solution that is effective for efficient water treatment and favors commercial aspects. Metal organic frameworks (MOFs), an emerging porous material, possess high stability, pore size tunability, greater surface area, and active sites. These MOFs can be tailored; thus, they can be customized according to the target pollutant. Hence, MOFs can be employed as adsorbents that effectively target different pollutants. Bio-MOFs are a kind of MOFs that are incorporated with biomolecules, which also possess properties of MOFs and are used as a nontoxic adsorbent. In this review, we elaborate on the interaction between MOFs and target pollutants, the role of linkers in the adsorption of contaminants, tailoring strategy that can be employed on MOFs and Bio-MOFs to target specific pollutants, and we also highlight the effect of environmental matrices on adsorption of pollutants by MOFs.
RESUMO
Removal of organic dyes like methylene blue (MB) from industrial effluents serves as potential source of potable water. Photocatalytic degradation using sustainable catalyst is deemed to be an affordable solution. In this work, Nd2O3/MgO nanocomposite with different compositions (1, 3, and 5wt% Nd2O3 with MgO) have been achieved using hydrothermal synthesis and characterized extensively. Interestingly, increasing Nd2O3 proportion (1-5%) enhances light absorption, and decreases band gap and electron-hole recombination. The efficacy of the photocatalysts is tested with the degradation of MB dye, through optimizing Nd2O3/MgO proportion, contact time, catalyst dose, and pH. Interestingly, control experiments reveal that 5wt% Nd2O3/MgO achieve 99.6% degradation of MB in 90 min at pH 7, compared to 88.8% with bare MgO under same condition. Kinetic data show that 5wt% Nd2O3/MgO exhibits ca. 3 times higher degradation rate compared to MgO. For the first time, our work enable MgO-based sustainable photocatalyst development with minimum (5 wt%) rare-earth combination to achieve excellent photocatalytic degradation performance.
RESUMO
Finding appropriate stimuli for controlling the breathing behavior of flexible metal-organic frameworks (MOFs) is highly challenging. Herein, we report the solvent-induced changes in the particle size and stability of different breathing phases of the MIL-53 series, a group of flexible MOFs. A water/dimethylformamide (DMF) ratio is tuned to synthesize members of the MIL-53 series which have different behaviors. The breathing is explored by high-pressure methane sorption tests. Increasing DMF concentration decreases MOF particle size and increases the stability of the porous phases, boosting the 5.8-65â bar sorption difference of methane, which is required for natural-gas delivery.
RESUMO
Covalent organic nanosheets (CONs) have emerged as a new class of functional two-dimensional (2D) porous organic polymeric materials with a high accessible surface, diverse functionality, and chemical stability. They could become versatile candidates for targeted drug delivery. Despite their many advantages, there are limitations to their use for target specific drug delivery. We anticipated that these drawbacks could be overturned by judicious postsynthetic modification steps to use CONs for targeted drug delivery. The postsynthetic modification would not only produce the desired functionality, it would also help to exfoliate to CONs as well. In order to meet this requirement, we have developed a facile, salt-mediated synthesis of covalent organic frameworks (COFs) in the presence of p-toluenesulfonic acid (PTSA). The COFs were subjected to sequential postsynthetic modifications to yield functionalized targeted CONs for targeted delivery of 5-fluorouracil to breast cancer cells. This postsynthetic modification resulted in simultaneous chemical delamination and functionalization to targeted CONs. Targeted CONs showed sustained release of the drug to the cancer cells through receptor-mediated endocytosis, which led to cancer cell death via apoptosis. Considering the easy and facile COF synthesis, functionality based postsynthetic modifications, and chemical delamination to CONs for potential advantageous targeted drug delivery, this process can have a significant impact in biomedical applications.
Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Benzenossulfonatos/química , Sistemas de Liberação de Medicamentos , Fluoruracila/farmacologia , Estruturas Metalorgânicas/química , Nanoestruturas/química , Antimetabólitos Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Fluoruracila/química , Humanos , Estruturas Metalorgânicas/síntese química , Estrutura Molecular , Tamanho da Partícula , Relação Estrutura-Atividade , Propriedades de SuperfícieRESUMO
Two new chemically stable functional crystalline covalent organic frameworkds (COFs) (Tp-Azo and Tp-Stb) were synthesized using the Schiff base reaction between triformylphloroglucinol (Tp) and 4,4'-azodianiline (Azo) or 4,4'-diaminostilbene (Stb), respectively. Both COFs show the expected keto-enamine form, and high stability toward boiling water, strong acidic, and basic media. H3PO4 doping in Tp-Azo leads to immobilization of the acid within the porous framework, which facilitates proton conduction in both the hydrous (σ = 9.9 × 10(-4) S cm(-1)) and anhydrous state (σ = 6.7 × 10(-5) S cm(-1)). This report constitutes the first emergence of COFs as proton conducting materials.
RESUMO
A Gd(III) -based porous metal-organic framework (MOF), Gd-pDBI, has been synthesized using fluorescent linker pDBI (pDBI=(1,4-bis(5-carboxy-1H-benzimidazole-2-yl)benzene)), resulting in a three-dimensional interpenetrated structure with a one-dimensional open channel (1.9×1.2â nm) filled with hydrogen-bonded water assemblies. Gd-pDBI exhibits high thermal stability, porosity, excellent water stability, along with organic-solvent and mild acid and base stability with retention of crystallinity. Gd-pDBI was transformed to the nanoscale regime (ca. 140â nm) by mechanical grinding to yield MG-Gd-pDBI with excellent water dispersibility (>90â min), maintaining its porosity and crystallinity. In vitro and in vivo studies on MG-Gd-pDBI revealed its low blood toxicity and highest drug loading (12â wt %) of anticancer drug doxorubicin in MOFs reported to date with pH-responsive cancer-cell-specific drug release.
Assuntos
Antineoplásicos/administração & dosagem , Derivados de Benzeno/química , Preparações de Ação Retardada/química , Doxorrubicina/administração & dosagem , Gadolínio/química , Compostos Organometálicos/química , Animais , Derivados de Benzeno/farmacocinética , Preparações de Ação Retardada/farmacocinética , Sistemas de Liberação de Medicamentos , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Gadolínio/farmacocinética , Humanos , Camundongos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Compostos Organometálicos/farmacocinética , PorosidadeRESUMO
A device comprising a zirconium-based metal-organic framework (MOF) mixed-matrix membrane (MMM) framed in a plastic holder has been used to monitor the content of personal care products (PCPs) in cosmetic samples. Seven different devices containing the porous frameworks UiO-66, UiO-66-COOH, UiO-67, DUT-52, DUT-67, MOF-801, and MOF-808 in polyvinylidene fluoride (PVDF) membranes were studied. Optimized membranes reach high adsorption capacities of PCPs, up to 12.5 mg·g-1 benzophenone in a 3.0 mg·L-1 sample. The MMM adsorption kinetics, uptake measurements, and isotherm studies were carried out with aqueous standard solutions of PCPs to ensure complete characterization of the performance. The studies demonstrate the high applicability and selectivity of the composites prepared, highlighting the performance of PVDF/DUT-52 MMM that poses uptakes up to 78% for those PCPs with higher affinity while observing detection limits for the entire method down to 0.03 µg·L-1. The PVDF/DUT-52 device allowed the detection of parabens and benzophenones in the samples, with PCPs found at concentrations of 1.9-24 mg·L-1.
RESUMO
Four new homochiral metal-organic framework (MOF) isomers, [Zn(l-L(Cl))(Cl)](H(2)O)(2) (1), [Zn(l-L(Br))(Br)](H(2)O)(2) (2), [Zn(d-L(Cl))(Cl)](H(2)O)(2) (3), and [Zn(d-L(Br))(Br)](H(2)O)(2) (4) [L = 3-methyl-2-(pyridin-4-ylmethylamino)butanoic acid], have been synthesized by using a derivative of L-/D-valine and Zn(CH(3)COO)(2)·2H(2)O. A three-periodic lattice with a parallel 1D helical channel was formed along the crystallographic c-axis. Molecular rearrangement results in an unprecedented zeolitic unh-topology in 1-4. In each case, two lattice water molecules (one H-bonded to halogen atoms) form a secondary helical continuous water chain inside the molecular helix. MOFs 1 and 2 shows different water adsorption properties and hence different water affinity. The arrangement of water molecules inside the channel was monitored by variable-temperature single-crystal X-ray diffraction, which indicated that MOF 1 has a higher water holding capacity than MOF 2. In MOF 1, water escapes at 80 °C, while in 2 the same happens at a much lower temperature (â¼40 °C). All the MOFs reported here shows reversible crystallization by readily reabsorbing moisture. In MOFs 1 and 2, the frameworks are stable after solvent removal, which is confirmed by a single-crystal to single-crystal transformation. MOFs 1 and 3 show high proton conductivity of 4.45 × 10(-5) and 4.42 × 10(-5) S cm(-1), respectively, while 2 and 4 shows zero proton conductivity. The above result is attributed to the fact that MOF 1 has a higher water holding capacity than MOF 2.
Assuntos
Compostos Organometálicos/química , Prótons , Água/química , Zeolitas/química , Zinco/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/síntese químicaRESUMO
Metal-organic frameworks (MOFs) have gathered tremendous interest among researchers for their potential applications such as in storage and separation. While some progress has been made towards shaping of MOFs to realize industrial applications, the mechanical properties of MOFs remain more or less unexplored. Over the last decade, this area has witnessed a steady growth in terms of understanding the mechanical stability of MOFs and its consequence on their performance. In this review, the mechanical properties of the reported macroscopic shaped MOF structures (mainly granules, pellets, tablets, monoliths, and gels) are discussed. Conclusions are then drawn to determine which shapes and shaping techniques promise to meet industrial requirements on the basis of mechanical stability. Finally, future research directions are proposed to improve our understanding, and possibly enhance stability, by correlating the properties from microscopic single-crystalline level to the industrially relevant macroscopic polycrystalline scale.
Assuntos
Estruturas Metalorgânicas/química , Estrutura Molecular , Tamanho da Partícula , Porosidade , Propriedades de SuperfícieRESUMO
Hydrazone-based covalent organic frameworks (COFs) are rich in functional groups but have very limited variety and applications. Herein, two hydroxy-rich hydrazone-based COFs are synthesized in pure water and postsynthetically incorporated with CoII, exhibiting Lewis acid catalytic activity towards cyanosilylation of various aldehydes with size selectivity.
RESUMO
The high pressure methane sorption tests on a flexible metal-organic framework [MIL-53(Al)-NH2] reveal a new phase transition to a large pore (lp) phase above 45 bar. The mixed-ligand strategy and pressure cycling tests are suggested to reduce the pressure requirement of such a phase transition for applications in natural gas storage.
RESUMO
GdIII -based metal-organic frameworks, Gd-pDBI-1 and Gd-pDBI-2, have been synthesized using the linker pDBI (pDBI=1,4-bis(5-carboxy-1H-benzimidazole-2yl)benzene). They exhibited structural diversity due to subtle change in reaction constituents. Owing to the judicious choice of the fluorescent linker, the materials could be used for bimodal imaging (fluorescent and magnetic resonance) and displayed a modest T1 relaxivity value.
RESUMO
A study integrating advanced experimental and modeling tools was undertaken to characterize the microstructural and interfacial properties of mixed matrix membranes (MMMs) composed of the zeolitic imidazolate framework ZIF-8 nanoparticles (NPs) and two polymers of intrinsic microporosity (PIM-1 and PIM-EA-TB). Analysis probed both the initial ZIF-8/PIM-1 colloidal suspensions and the final hybrid membranes. By combination of dynamic light scattering (DLS) and transmission electron microscopy (TEM) analytical and imaging techniques with small-angle X-ray scattering (SAXS), the colloidal suspensions were shown to consist mainly of two distinct kinds of particles, namely, polymer aggregates of about 200 nm in diameter and densely packed ZIF-8-NP aggregates of a few 100 nm in diameter with a 3 nm thick polymer top-layer. Such aggregates are likely to impart the granular texture of ZIF-8/PIMs MMMs as shown by SEM-XEDS analysis. At the molecular scale, modeling studies showed that the surface coverage of ZIF-8 NPs by both polymers appears not to be optimal with the presence of microvoids at the interfaces that indicates only a moderate compatibility between the polymer and ZIF-8. This study shows that the microstructure of MMMs results from a complex interplay between the ZIF-8/PIM compatibility, solvent, surface chemistry of the ZIF-8 NPs, and the physicochemical properties of the polymers such as molecular structure and rigidity.
RESUMO
Two metallohydrogels based on an amino acid-based ligand and Zn(II) salts were synthesized. These hydrogels show an uncommon, reversible, time-dependent transformation from the opaque to transparent state. These hydrogels also exhibit gradual dissolution in water (pH ≤ 7) over time. A water-soluble stimulant, caffeine, could be in situ loaded into the hydrogels and slowly released during dissolution.
Assuntos
Hidrogéis/química , Metais/química , Aminoácidos/química , Cafeína/administração & dosagem , Cafeína/química , Estimulantes do Sistema Nervoso Central/administração & dosagem , Estimulantes do Sistema Nervoso Central/química , Preparações de Ação Retardada , Estabilidade de Medicamentos , Cinética , Ligantes , Solubilidade , Zinco/químicaRESUMO
Metal-organic frameworks (MOFs) are a class of hybrid network supramolecular solid materials comprised of organized organic linkers and metal cations. They can display enormously high surface areas with tunable pore size and functionality, and can be used as hosts for a range of guest molecules. Since their discovery, MOFs have experienced widespread exploration for their applications in gas storage, drug delivery and sensing. This article covers general and modern synthetic strategies to prepare MOFs, and discusses their structural diversity and properties with respect to application perspectives.
RESUMO
A multiresponsive metallohydrogel based on an amino acid-derived low molecular weight (LMW) ligand and a Zn(II) salt was prepared. This hydrogel showed remarkable shape-persistent, self-standing, load-bearing and self-healing properties, which is uncommon in LMW hydrogels.
Assuntos
Aminoácidos/química , Complexos de Coordenação/química , Hidrogéis/química , Zinco/química , Transição de Fase , Sais/química , Suporte de CargaRESUMO
Proton conductivity has been studied thoroughly in two isomeric In(III)-isophthalate based MOFs. In-IA-2D-1 is capable of showing proton conductivity (3.4 × 10(-3) S cm(-1)) under humidified conditions (98% RH), whereas In-IA-2D-2 can conduct protons (2.6 × 10(-5) S cm(-1)) under humidified as well as anhydrous conditions.
RESUMO
Eight Zn-based porous (1.2 nm) homochiral MOFs (ValZnX, AlaZnX, X = Cl(-), Br(-), HCO2(-) and CH3CO2(-)) were synthesized which possess extremely rare zeolitic (unh) topology. These MOFs show an unprecedented hydrolytic regenerability. Salt metathesis reaction performed on these 3D MOFs in water resulted in 2D coordination polymers (CPs).
RESUMO
Proton conductivity of five Ca-based MOFs which depends on the amount of water molecules coordinated to the Ca-centres has been reported. These MOFs show high temperature proton conductivity due to the strong hydrogen bonding between the lattice and coordinated water molecules.
RESUMO
Two self-assembled isostructural functionalized metal-organic nanotubes have been synthesized using 5-triazole isophthalic acid (5-TIA) with In(III) and Cd(II). In- and Cd-5TIA possess one-dimensional (1D) nanotubular architecture and show proton conductivity along regular 1D channels, measured as 5.35 × 10(-5) and 3.61 × 10(-3) S cm(-1) respectively.