RESUMO
Although climate change is expected to drive tree species toward colder and wetter regions of their distribution, broadscale empirical evidence is lacking. One possibility is that past and present human activities in forests obscure or alter the effects of climate. Here, using data from more than two million monitored trees from 73 widely distributed species, we quantify changes in tree species density within their climatic niches across Northern Hemisphere forests. We observe a reduction in mean density across species, coupled with a tendency toward increasing tree size. However, the direction and magnitude of changes in density exhibit considerable variability between species, influenced by stand development that results from previous stand-level disturbances. Remarkably, when accounting for stand development, our findings show a significant change in density toward cold and wet climatic conditions for 43% of the species, compared to only 14% of species significantly changing their density toward warm and arid conditions in both early- and late-development stands. The observed changes in climate-driven density showed no clear association with species traits related to drought tolerance, recruitment and dispersal capacity, or resource use, nor with the temperature or aridity affiliation of the species, leaving the underlying mechanism uncertain. Forest conservation policies and associated management strategies might want to consider anticipated long-term species range shifts alongside the integration of contemporary within-distribution density changes.
Assuntos
Mudança Climática , Florestas , Árvores , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Ecossistema , Clima , Secas , TemperaturaRESUMO
Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution.
Assuntos
Mudança Climática , Árvores/fisiologia , Ecossistema , Fertilidade/fisiologia , Geografia , América do Norte , IncertezaRESUMO
The fundamental trade-off between current and future reproduction has long been considered to result in a tendency for species that can grow large to begin reproduction at a larger size. Due to the prolonged time required to reach maturity, estimates of tree maturation size remain very rare and we lack a global view on the generality and the shape of this trade-off. Using seed production from five continents, we estimate tree maturation sizes for 486 tree species spanning tropical to boreal climates. Results show that a species' maturation size increases with maximum size, but in a non-proportional way: the largest species begin reproduction at smaller sizes than would be expected if maturation were simply proportional to maximum size. Furthermore, the decrease in relative maturation size is steepest in cold climates. These findings on maturation size drivers are key to accurately represent forests' responses to disturbance and climate change.
Assuntos
Árvores , Clima Tropical , Árvores/crescimento & desenvolvimento , Mudança Climática , Reprodução , FlorestasRESUMO
Climate change effects on tree reproduction are poorly understood, even though the resilience of populations relies on sufficient regeneration to balance increasing rates of mortality. Forest-forming tree species often mast, i.e. reproduce through synchronised year-to-year variation in seed production, which improves pollination and reduces seed predation. Recent observations in European beech show, however, that current climate change can dampen interannual variation and synchrony of seed production and that this masting breakdown drastically reduces the viability of seed crops. Importantly, it is unclear under which conditions masting breakdown occurs and how widespread breakdown is in this pan-European species. Here, we analysed 50 long-term datasets of population-level seed production, sampled across the distribution of European beech, and identified increasing summer temperatures as the general driver of masting breakdown. Specifically, increases in site-specific mean maximum temperatures during June and July were observed across most of the species range, while the interannual variability of population-level seed production (CVp) decreased. The declines in CVp were greatest, where temperatures increased most rapidly. Additionally, the occurrence of crop failures and low seed years has decreased during the last four decades, signalling altered starvation effects of masting on seed predators. Notably, CVp did not vary among sites according to site mean summer temperature. Instead, masting breakdown occurs in response to warming local temperatures (i.e. increasing relative temperatures), such that the risk is not restricted to populations growing in warm average conditions. As lowered CVp can reduce viable seed production despite the overall increase in seed count, our results warn that a covert mechanism is underway that may hinder the regeneration potential of European beech under climate change, with great potential to alter forest functioning and community dynamics.
Assuntos
Mudança Climática , Fagus , Estações do Ano , Temperatura , Fagus/crescimento & desenvolvimento , Fagus/fisiologia , Europa (Continente) , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Reprodução , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , PolinizaçãoRESUMO
Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size-fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models.
Assuntos
Fertilidade , Modelos Biológicos , Regeneração , Árvores/crescimento & desenvolvimento , FlorestasRESUMO
The periodic production of large seed crops, or masting, is a widespread phenomenon in perennial plants. This behavior can enhance the reproductive efficiency of plants, leading to increased fitness, and produce ripple effects on food webs. While variability from year to year is a defining characteristic of masting, the methods used to quantify this variability are highly debated. The commonly used coefficient of variation lacks the ability to account for the serial dependence in mast data and can be influenced by zeros, making it a less suitable choice for various applications based on individual-level observations, such as phenotypic selection, heritability, and climate change studies, which rely on individual-plant-level datasets that often contain numerous zeros. To address these limitations, we present three case studies and introduce volatility and periodicity, which account for the variance in the frequency domain by emphasizing the significance of long intervals in masting. By utilizing examples of Sorbus aucuparia, Pinus pinea, Quercus robur, Quercus pubescens, and Fagus sylvatica, we demonstrate how volatility captures the effects of variance at both high and low frequencies, even in the presence of zeros, leading to improved ecological interpretations of the results. The growing availability of long-term, individual-plant datasets promises significant advancements in the field, but requires appropriate tools for analysis, which the new metrics provide.
Assuntos
Fagus , Pinus , Quercus , Reprodução , SementesRESUMO
With climate change, natural disturbances such as storm or fire are reshuffled, inducing pervasive shifts in forest dynamics. To predict how it will impact forest structure and composition, it is crucial to understand how tree species differ in their sensitivity to disturbances. In this study, we investigated how functional traits and species mean climate affect their sensitivity to disturbances while controlling for tree size and stand structure. With data on 130,594 trees located on 7617 plots that were disturbed by storm, fire, snow, biotic or other disturbances from the French, Spanish, and Finnish National Forest Inventory, we modeled annual mortality probability for 40 European tree species as a function of tree size, dominance status, disturbance type, and intensity. We tested the correlation of our estimated species probability of disturbance mortality with their traits and their mean climate niches. We found that different trait combinations controlled species sensitivity to disturbances. Storm-sensitive species had a high height-dbh ratio, low wood density and high maximum growth, while fire-sensitive species had low bark thickness and high P50. Species from warmer and drier climates, where fires are more frequent, were more resistant to fire. The ranking in disturbance sensitivity between species was overall consistent across disturbance types. Productive conifer species were the most disturbance sensitive, while Mediterranean oaks were the least disturbance sensitive. Our study identified key relations between species functional traits and disturbance sensitivity, that allows more reliable predictions of how changing climate and disturbance regimes will impact future forest structure and species composition at large spatial scales.
Assuntos
Incêndios , Florestas , Mudança Climática , ProbabilidadeRESUMO
Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250-fold increase in seed abundance from cold-dry to warm-wet climates, driven primarily by a 100-fold increase in seed production for a given tree size. The modest (threefold) increase in forest productivity across the same climate gradient cannot explain the magnitudes of these trends. The increase in seeds per tree can arise from adaptive evolution driven by intense species interactions or from the direct effects of a warm, moist climate on tree fecundity. Either way, the massive differences in seed supply ramify through food webs potentially explaining a disproportionate role for species interactions in the wet tropics.
Assuntos
Florestas , Árvores , Biodiversidade , Clima , Fertilidade , SementesRESUMO
Phenotypic traits and their associated trade-offs have been shown to have globally consistent effects on individual plant physiological functions, but how these effects scale up to influence competition, a key driver of community assembly in terrestrial vegetation, has remained unclear. Here we use growth data from more than 3 million trees in over 140,000 plots across the world to show how three key functional traits--wood density, specific leaf area and maximum height--consistently influence competitive interactions. Fast maximum growth of a species was correlated negatively with its wood density in all biomes, and positively with its specific leaf area in most biomes. Low wood density was also correlated with a low ability to tolerate competition and a low competitive effect on neighbours, while high specific leaf area was correlated with a low competitive effect. Thus, traits generate trade-offs between performance with competition versus performance without competition, a fundamental ingredient in the classical hypothesis that the coexistence of plant species is enabled via differentiation in their successional strategies. Competition within species was stronger than between species, but an increase in trait dissimilarity between species had little influence in weakening competition. No benefit of dissimilarity was detected for specific leaf area or wood density, and only a weak benefit for maximum height. Our trait-based approach to modelling competition makes generalization possible across the forest ecosystems of the world and their highly diverse species composition.
Assuntos
Fenótipo , Árvores/anatomia & histologia , Árvores/fisiologia , Florestas , Internacionalidade , Modelos Biológicos , Folhas de Planta/fisiologia , Árvores/crescimento & desenvolvimento , Madeira/análiseRESUMO
AbstractIn community ecology, it is widely assumed that organisms with similar traits compete more intensely with one another for resources. This assumption is often encoded into theory and empirical tests via a unimodal competition function, which predicts that per capita competitive effect declines with separation in traits. Yet it remains unknown how well this function represents the true effect of traits on competitive outcomes, especially for long-lived plant communities, where lifetime fitness is difficult to estimate. Here, we evaluate the shape of competition functions embedded in two resource-based (RB) models, wherein plants compete for shared, essential resources. In the first RB model individuals compete for two essential nutrients, and in the second they compete for light in a size-based successional setting. We compared the shapes of the competition functions that emerged from interactions within these RB models to the unimodal function and others shapes commonly applied. In few instances did the trait-based competition function emerging from the RB model even vaguely resemble any of the shapes previously used. The mismatch between these two approaches suggests that theory derived using fixed competition functions based on trait separation may not apply well to plant systems, where individuals compete for shared resources. The more promising path will be to model depletion of resources by populations in relation to their traits, with its consequences for fitness landscapes and competitive exclusion.
Assuntos
Ecologia , Plantas , Humanos , FenótipoRESUMO
Size inequality has been considered a key feature of plant population structure with impacts on ecosystem functions. In forest ecosystems, studies examining the relationship between tree size inequality and stand productivity have produced mixed outcomes. These studies found positive, neutral or negative relationships and discussed how this could be influenced by competition for light between trees (e.g. light interception efficiency), but far less attention has been paid to the role played by tree ontogenetic growth. In this article, we present a simple mathematical model that predicts the basal area growth of a two-strata stand as a function of tree basal areas and asymmetric competition. Comparing the growth of this stand to the growth of a spatially homogeneous one-stratum stand and a spatially heterogeneous one-stratum stand, we show that higher growth of the two-strata stand is achieved for concave shape, increasing functions of ontogenetic growth and for low intensities of absolute size-asymmetric competition. We also demonstrate that the difference in growth between the two-strata stand and the one-stratum stands depends on tree size inequality, mean tree basal area and total basal area in the two-strata stand. We finally found that the relationships between tree size inequality and productivity can vary from positive to negative and even non-monotonous. However, we highlight that negative relationships may be more frequent. As a conclusion, our results indicate that ontogenetic growth can have a major impact on the form and the magnitude of the size inequality-productivity relationship.
Assuntos
Ecossistema , Florestas , Árvores/crescimento & desenvolvimento , EficiênciaRESUMO
Humans require multiple services from ecosystems, but it is largely unknown whether trade-offs between ecosystem functions prevent the realisation of high ecosystem multifunctionality across spatial scales. Here, we combined a comprehensive dataset (28 ecosystem functions measured on 209 forest plots) with a forest inventory dataset (105,316 plots) to extrapolate and map relationships between various ecosystem multifunctionality measures across Europe. These multifunctionality measures reflected different management objectives, related to timber production, climate regulation and biodiversity conservation/recreation. We found that trade-offs among them were rare across Europe, at both local and continental scales. This suggests a high potential for 'win-win' forest management strategies, where overall multifunctionality is maximised. However, across sites, multifunctionality was on average 45.8-49.8% below maximum levels and not necessarily highest in protected areas. Therefore, using one of the most comprehensive assessments so far, our study suggests a high but largely unrealised potential for management to promote multifunctional forests.
Assuntos
Biodiversidade , Ecossistema , Florestas , Clima , Europa (Continente) , HumanosRESUMO
We present repeated tree measurement data from 63 permanent plots in mountain forests in France. Plot elevations range from 800 (lower limit of the montane belt) to 1942 m above sea level (subalpine belt). Forests mainly consist of pure or mixed stands dominated by European beech (Fagus sylvatica), Silver fir (Abies alba), and Norway spruce (Picea abies), in association with various broadleaved species at low elevation and with Arolla pine (Pinus cembra) at high elevation. The plot network includes 23 plots in stands that have not been managed for the last 40 years (at least) and 40 plots in plots managed according to an uneven-aged system with single-tree or small-group selection cutting. Plot sizes range from 0.2 to 1.9 ha. Plots were installed from 1994 to 2004 and remeasured two to five times during the 1994-2015 period. During the first census (installation), living trees more than 7.5 cm in dbh were identified, their diameter at breast height (dbh) was measured and their social status (strata) noted. Trees were spatially located, either with x, y, and z coordinates (40 plots) or within 0.25-ha square subplots (23 plots). In addition, in a subset of plots (58 plots), tree heights and tree crown dimensions were measured on a subset of trees and dead standing trees and stumps were included in the census. Remeasurements after installation include live tree diameters (including recruited trees), tree status (living, damaged, dead, stump), and for a subset of trees, height. At the time of establishment of the plots, plot densities range from 181 to 1328 stems/ha and plot basal areas range from 13.6 to 81.3 m2 /ha.
Assuntos
Florestas , Árvores/classificação , França , Noruega , Picea , Árvores/crescimento & desenvolvimentoRESUMO
Damage due to wind-storms and droughts is increasing in many temperate forests, yet little is known about the long-term roles of these key climatic factors in forest dynamics and in the carbon budget. The objective of this study was to estimate individual and coupled effects of droughts and wind-storms on adult tree mortality across a 31-year period in 115 managed, mixed coniferous forest stands from the Western Alps and the Jura mountains. For each stand, yearly mortality was inferred from management records, yearly drought from interpolated fields of monthly temperature, precipitation and soil water holding capacity, and wind-storms from interpolated fields of daily maximum wind speed. We performed a thorough model selection based on a leave-one-out cross-validation of the time series. We compared different critical wind speeds (CWSs) for damage, wind-storm, and stand variables and statistical models. We found that a model including stand characteristics, drought, and storm strength using a CWS of 25 ms-1 performed the best across most stands. Using this best model, we found that drought increased damage risk only in the most southerly forests, and its effect is generally maintained for up to 2 years. Storm strength increased damage risk in all forests in a relatively uniform way. In some stands, we found positive interaction between drought and storm strength most likely because drought weakens trees, and they became more prone to stem breakage under wind-loading. In other stands, we found negative interaction between drought and storm strength, where excessive rain likely leads to soil water saturation making trees more susceptible to overturning in a wind-storm. Our results stress that temporal data are essential to make valid inferences about ecological impacts of disturbance events, and that making inferences about disturbance agents separately can be of limited validity. Under projected future climatic conditions, the direction and strength of these ecological interactions could also change.
Assuntos
Secas , Árvores , Vento , Florestas , França , Chuva , Solo , Suíça , Temperatura , ÁguaRESUMO
Ecologists have limited understanding of how geographic variation in forest biomass arises from differences in growth and mortality at continental to global scales. Using forest inventories from across North America, we partitioned continental-scale variation in biomass growth and mortality rates of 49 tree species groups into (1) species-independent spatial effects and (2) inherent differences in demographic performance among species. Spatial factors that were separable from species composition explained 83% and 51% of the respective variation in growth and mortality. Moderate additional variation in mortality (26%) was attributable to differences in species composition. Age-dependent biomass models showed that variation in forest biomass can be explained primarily by spatial gradients in growth that were unrelated to species composition. Species-dependent patterns of mortality explained additional variation in biomass, with forests supporting less biomass when dominated by species that are highly susceptible to competition (e.g. Populus spp.) or to biotic disturbances (e.g. Abies balsamea).
Assuntos
Biomassa , Florestas , Modelos Biológicos , Árvores/fisiologia , Biodiversidade , Ecossistema , América do Norte , Tempo , Árvores/crescimento & desenvolvimentoRESUMO
Hutchinson defined species' realized niche as the set of environmental conditions in which populations can persist in the presence of competitors. In terms of demography, the realized niche corresponds to the environments where the intrinsic growth rate (r) of populations is positive. Observed species occurrences should reflect the realized niche when additional processes like dispersal and local extinction lags do not have overwhelming effects. Despite the foundational nature of these ideas, quantitative assessments of the relationship between range-wide demographic performance and occurrence probability have not been made. This assessment is needed both to improve our conceptual understanding of species' niches and ranges and to develop reliable mechanistic models of species geographic distributions that incorporate demography and species interactions. The objective of this study is to analyse how demographic parameters (intrinsic growth rate r and carrying capacity K) and population density (N) relate to occurrence probability (Pocc ). We hypothesized that these relationships vary with species' competitive ability. Demographic parameters, density, and occurrence probability were estimated for 108 tree species from four temperate forest inventory surveys (Québec, Western US, France and Switzerland). We used published information of shade tolerance as indicators of light competition strategy, assuming that high tolerance denotes high competitive capacity in stable forest environments. Interestingly, relationships between demographic parameters and occurrence probability did not vary substantially across degrees of shade tolerance and regions. Although they were influenced by the uncertainty in the estimation of the demographic parameters, we found that r was generally negatively correlated with Pocc , while N, and for most regions K, was generally positively correlated with Pocc . Thus, in temperate forest trees the regions of highest occurrence probability are those with high densities but slow intrinsic population growth rates. The uncertain relationships between demography and occurrence probability suggests caution when linking species distribution and demographic models.
RESUMO
Increasing water stress is emerging as a global phenomenon, and is anticipated to have a marked impact on forest function. The role of tree functional strategies is pivotal in regulating forest fitness and their ability to cope with water stress. However, how the functional strategies found at the tree or species level scale up to characterise forest communities and their variation across regions is not yet well-established. By combining eight water-stress-related functional traits with forest inventory data from the USA and Europe, we investigated the community-level trait coordination and the biogeographic patterns of trait associations for woody plants, and analysed the relationships between the trait associations and climate factors. We find that the trait associations at the community level are consistent with those found at the species level. Traits associated with acquisitive-conservative strategies forms one dimension of variation, while leaf turgor loss point, associated with stomatal water regulation strategy, loads along a second dimension. Surprisingly, spatial patterns of community-level trait association are better explained by temperature than by aridity, suggesting a temperature-driven adaptation. These findings provide a basis to build predictions of forest response under water stress, with particular potential to improve simulations of tree mortality and forest biomass accumulation in a changing climate.
Assuntos
Florestas , Árvores , Árvores/fisiologia , Europa (Continente) , Desidratação , Água/metabolismo , Folhas de Planta , Estados Unidos , Clima , Biomassa , Temperatura , Mudança ClimáticaRESUMO
In forest communities, light competition is a key process for community assembly. Species' differences in seedling and sapling tolerance to shade cast by overstory trees is thought to determine species composition at late-successional stages. Most forests are distant from these late-successional equilibria, impeding a formal evaluation of their potential species composition. To extrapolate competitive equilibria from short-term data, we therefore introduce the JAB model, a parsimonious dynamic model with interacting size-structured populations, which focuses on sapling demography including the tolerance to overstory competition. We apply the JAB model to a two-"species" system from temperate European forests, that is, the shade-tolerant species Fagus sylvatica L. and the group of all other competing species. Using Bayesian calibration with prior information from external Slovakian national forest inventory (NFI) data, we fit the JAB model to short time series from the German NFI. We use the posterior estimates of demographic rates to extrapolate that F. sylvatica will be the predominant species in 94% of the competitive equilibria, despite only predominating in 24% of the initial states. We further simulate counterfactual equilibria with parameters switched between species to assess the role of different demographic processes for competitive equilibria. These simulations confirm the hypothesis that the higher shade tolerance of F. sylvatica saplings is key for its long-term predominance. Our results highlight the importance of demographic differences in early life stages for tree species assembly in forest communities.
RESUMO
Intraspecific variability (IV) has been proposed to explain species coexistence in diverse communities. Assuming, sometimes implicitly, that conspecific individuals can perform differently in the same environment and that IV increases niche overlap, previous studies have found contrasting results regarding the effect of IV on species coexistence. We aim at showing that the large IV observed in data does not mean that conspecific individuals are necessarily different in their response to the environment and that the role of high-dimensional environmental variation in determining IV has largely remained unexplored in forest plant communities. We first used a simulation experiment where an individual attribute is derived from a high-dimensional model, representing "perfect knowledge" of individual response to the environment, to illustrate how large observed IV can result from "imperfect knowledge" of the environment. Second, using growth data from clonal Eucalyptus plantations in Brazil, we estimated a major contribution of the environment in determining individual growth. Third, using tree growth data from long-term tropical forest inventories in French Guiana, Panama and India, we showed that tree growth in tropical forests is structured spatially and that despite a large observed IV at the population level, conspecific individuals perform more similarly locally than compared with heterospecific individuals. As the number of environmental dimensions that are well quantified at fine scale is generally lower than the actual number of dimensions influencing individual attributes, a great part of observed IV might be represented as random variation across individuals when in fact it is environmentally driven. This mis-representation has important consequences for inference about community dynamics. We emphasize that observed IV does not necessarily impact species coexistence per se but can reveal species response to high-dimensional environment, which is consistent with niche theory and the observation of the many differences between species in nature.
RESUMO
The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands.