Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34135125

RESUMO

Wnt5a-Ror signaling is a conserved pathway that regulates morphogenetic processes during vertebrate development [R. T. Moon et al, Development 119, 97-111 (1993); I. Oishi et al, Genes Cells 8, 645-654 (2003)], but its downstream signaling events remain poorly understood. Through a large-scale proteomic screen in mouse embryonic fibroblasts, we identified the E3 ubiquitin ligase Pdzrn3 as a regulatory target of the Wnt5a-Ror pathway. Upon pathway activation, Pdzrn3 is degraded in a ß-catenin-independent, ubiquitin-proteasome system-dependent manner. We developed a flow cytometry-based reporter to monitor Pdzrn3 abundance and delineated a signaling cascade involving Frizzled, Dishevelled, Casein kinase 1, and Glycogen synthase kinase 3 that regulates Pdzrn3 stability. Epistatically, Pdzrn3 is regulated independently of Kif26b, another Wnt5a-Ror effector. Wnt5a-dependent degradation of Pdzrn3 requires phosphorylation of three conserved amino acids within its C-terminal LNX3H domain [M. Flynn, O. Saha, P. Young, BMC Evol. Biol. 11, 235 (2011)], which acts as a bona fide Wnt5a-responsive element. Importantly, this phospho-dependent degradation is essential for Wnt5a-Ror modulation of cell migration. Collectively, this work establishes a Wnt5a-Ror cell morphogenetic cascade involving Pdzrn3 phosphorylation and degradation.


Assuntos
Proteômica , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Via de Sinalização Wnt , Proteína Wnt-5a/metabolismo , Animais , Movimento Celular , Camundongos , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios Proteicos , Proteólise , Reprodutibilidade dos Testes , Ubiquitina/metabolismo
2.
Drug Metab Dispos ; 46(5): 692-696, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29439128

RESUMO

Targeted protein quantification using liquid chromatography-tandem mass spectrometry with stable isotope-labeled standards is recognized as the gold standard of practice for protein quantification. Such assays, however, can only cover a limited number of proteins, and developing targeted methods for larger numbers of proteins requires substantial investment. Alternatively, large-scale global proteomic experiments along with computational methods such as the "total protein approach" (TPA) have the potential to provide extensive protein quantification. In this study, we compared the TPA-based quantitation of seven major hepatic uptake transporters in four human liver tissue samples using global proteomic data obtained from two multiplexed tandem mass tag experiments (performed in two independent laboratories) to the quantitative data from targeted proteomic assays. The TPA-based quantitation of these hepatic transporters [sodium-taurocholate cotransporting polypeptide (NTCP/SLC10A1), organic anion transporter 2 (OAT2/SLC22A7), OAT7/SLC22A9, organic anion-transporting polypeptide 1B1 (OATP1B1/SLCO1B1), OATP1B3/SLCO1B3, OATP2B1/SLCO2B1, and organic cation transporter (OCT1/SLC22A1)] showed good-to-excellent correlations (Pearson r = 0.74-1.00) to the targeted data. In addition, the values were similar to those measured by targeted proteomics with 71% and 86% of the data sets falling within 3-fold of the targeted data. A comparison of the TPA-based quantifications of enzyme abundances to available literature data showed that the majority of the enzyme quantifications fell within the reference data intervals. In conclusion, these results demonstrate the capability of multiplexed global proteomic experiments to detect differences in protein expression between samples and provide reasonable estimations of protein expression levels.


Assuntos
Transporte Biológico/fisiologia , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Preparações Farmacêuticas/metabolismo , Cromatografia Líquida/métodos , Hepatócitos/metabolismo , Humanos , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
3.
Mol Cell ; 36(3): 393-404, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19917248

RESUMO

A preference for homologs over sister chromatids in homologous recombination is a fundamental difference in meiotic versus mitotic cells. In budding yeast, the bias for interhomolog recombination in meiosis requires the Dmc1 recombinase and the meiosis-specific kinase Mek1, which suppresses engagement of sister chromatids by the mitotic recombinase Rad51. Here, a combination of proteomic, biochemical, and genetic approaches has identified an additional role for Mek1 in inhibiting the activity of the Rad51 recombinase through phosphorylation of its binding partner, Rad54. Rad54 phosphorylation of threonine 132 attenuates complex formation with Rad51, and a negative charge at this position reduces Rad51 function in vitro and in vivo. Thus, Mek1 phosphorylation provides a dynamic means of controlling recombination partner choice in meiosis in two ways: (1) it reduces Rad51 activity through inhibition of Rad51/Rad54 complex formation, and (2) it suppresses Rad51-mediated strand invasion of sister chromatids via a Rad54-independent mechanism.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , MAP Quinase Quinase 1/metabolismo , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Quebras de DNA de Cadeia Dupla , DNA Helicases , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Immunoblotting , MAP Quinase Quinase 1/genética , Espectrometria de Massas , Meiose , Mutação , Fosforilação , Ligação Proteica , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Esporos Fúngicos/genética , Treonina/metabolismo
4.
Anal Chem ; 85(11): 5340-6, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23662842

RESUMO

Targeted proteomics assays such as those measuring end points in activity assays are sensitive and specific but often lack in throughput. In an effort to significantly increase throughput, a comparison was made between the traditional approach which utilizes an internal standard and the multiplexing approach which relies on isobaric tagging. A kinase activity assay was used for proof of concept, and experiments included three biological replicates for every condition. Results from the two approaches were highly similar with the multiplexing showing greater throughput. Two novel 6-plex isobaric tags were added for a total of three 6-plex experiments (18-plex) in a single run. Next, three mass variants of the target peptide were labeled with the three isobaric tags giving nine 6-plex reactions for 54-plex quantitation in a single run. Since the multiplexing approach allows all samples to be combined prior to purification and acquisition, the 54-plex approach resulted in a significant reduction in purification resources (time, reagents, etc.) and a ~50-fold improvement in acquisition throughput. We demonstrate the 54-plex assay in several ways including measuring inhibition of PKA activity in MCF7 cell lysates for a panel of nine compounds.


Assuntos
Neoplasias da Mama/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Espectrometria de Massas/métodos , Fragmentos de Peptídeos/análise , Proteômica/métodos , Neoplasias da Mama/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Células Tumorais Cultivadas
5.
Anal Chem ; 84(14): 6233-9, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22724890

RESUMO

Protein phosphorylation is an important and ubiquitous post-translational modification in eukaryotic biological systems. The KAYAK (Kinase ActivitY Assay for Kinome profiling) assay measures the phosphorylation rates of dozens of peptide substrates simultaneously, directly from cell lysates. Here, we simplified the assay by removing the phosphopeptide enrichment step, increasing throughput while maintaining similar data quality. We term this new method, direct-KAYAK, because kinase activities were measured directly from reaction mixtures after desalting. In addition, new peptides were included to profile additional kinase pathways and redundant substrate peptides were removed. Finally, the method is now performed in 96-well plate format using a benchtop orbitrap mass spectrometer and the Pinpoint software package for improved data analysis. We applied the new high-throughput method to measure IC(50) values for kinases involved in monocyte-to-macrophage differentiation, a process important for inflammation and the immune response.


Assuntos
Ensaios Enzimáticos/métodos , Espectrometria de Massas/métodos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Humanos , Concentração Inibidora 50 , Peptídeos/química , Peptídeos/metabolismo , Software
6.
Elife ; 102021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34085925

RESUMO

Defective autophagy is strongly associated with chronic inflammation. Loss-of-function of the core autophagy gene Atg16l1 increases risk for Crohn's disease in part by enhancing innate immunity through myeloid cells such as macrophages. However, autophagy is also recognized as a mechanism for clearance of certain intracellular pathogens. These divergent observations prompted a re-evaluation of ATG16L1 in innate antimicrobial immunity. In this study, we found that loss of Atg16l1 in myeloid cells enhanced the killing of virulent Shigella flexneri (S.flexneri), a clinically relevant enteric bacterium that resides within the cytosol by escaping from membrane-bound compartments. Quantitative multiplexed proteomics of murine bone marrow-derived macrophages revealed that ATG16L1 deficiency significantly upregulated proteins involved in the glutathione-mediated antioxidant response to compensate for elevated oxidative stress, which simultaneously promoted S.flexneri killing. Consistent with this, myeloid-specific deletion of Atg16l1 in mice accelerated bacterial clearance in vitro and in vivo. Pharmacological induction of oxidative stress through suppression of cysteine import enhanced microbial clearance by macrophages. Conversely, antioxidant treatment of macrophages permitted S.flexneri proliferation. These findings demonstrate that control of oxidative stress by ATG16L1 and autophagy regulates antimicrobial immunity against intracellular pathogens.


Assuntos
Proteínas Relacionadas à Autofagia/deficiência , Autofagia , Disenteria Bacilar/microbiologia , Imunidade Inata , Macrófagos/microbiologia , Estresse Oxidativo , Proteoma , Proteômica , Shigella flexneri/patogenicidade , Animais , Proteínas Relacionadas à Autofagia/genética , Células Cultivadas , Modelos Animais de Doenças , Disenteria Bacilar/imunologia , Disenteria Bacilar/metabolismo , Interações Hospedeiro-Patógeno , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Viabilidade Microbiana , Shigella flexneri/imunologia , Shigella flexneri/metabolismo , Virulência
7.
Biochemistry ; 49(51): 10902-11, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21090696

RESUMO

Methyl-coenzyme M reductase (MCR) from methanogenic archaea catalyzes the terminal step in methanogenesis using coenzyme B (CoBSH) as the two-electron donor to reduce methyl-coenzyme M (methyl-SCoM) to form methane and the heterodisulfide, CoBS-SCoM. The active site of MCR contains an essential redox-active nickel tetrapyrrole cofactor, coenzyme F(430), which is active in the Ni(I) state (MCR(red1)). Several catalytic mechanisms have been proposed for methane synthesis that mainly differ in whether an organometallic methyl-Ni(III) or a methyl radical is the first catalytic intermediate. A mechanism was recently proposed in which methyl-Ni(III) undergoes homolysis to generate a methyl radical (Li, X., Telser, J., Kunz, R. C., Hoffman, B. M., Gerfen, G., and Ragsdale, S. W. (2010) Biochemistry 49, 6866-6876). Discrimination among these mechanisms requires identification of the proposed intermediates, none of which have been observed with native substrates. Apparently, intermediates form and decay too rapidly to accumulate to detectible amounts during the reaction between methyl-SCoM and CoBSH. Here, we describe the reaction of methyl-SCoM with a substrate analogue (CoB(6)SH) in which the seven-carbon heptanoyl moiety of CoBSH has been replaced with a hexanoyl group. When MCR(red1) is reacted with methyl-SCoM and CoB(6)SH, methanogenesis occurs 1000-fold more slowly than with CoBSH. By transient kinetic methods, we observe decay of the active Ni(I) state coupled to formation and subsequent decay of alkyl-Ni(III) and organic radical intermediates at catalytically competent rates. The kinetic data also revealed substrate-triggered conformational changes in active Ni(I)-MCR(red1). Electron paramagnetic resonance (EPR) studies coupled with isotope labeling experiments demonstrate that the radical intermediate is not tyrosine-based. These observations provide support for a mechanism for MCR that involves methyl-Ni(III) and an organic radical as catalytic intermediates. Thus, the present study provides important mechanistic insights into the mechanism of this key enzyme that is central to biological methane formation.


Assuntos
Mesna/análogos & derivados , Methanobacteriaceae/enzimologia , Oxirredutases/metabolismo , Fosfotreonina/análogos & derivados , Acetilação , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Mesna/metabolismo , Metano/metabolismo , Methanobacteriaceae/metabolismo , Fosfotreonina/química , Fosfotreonina/metabolismo , Espectrofotometria , Tirosina/análogos & derivados , Tirosina/metabolismo
8.
Biochemistry ; 49(32): 6866-76, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20597483

RESUMO

Methyl-coenzyme M reductase (MCR) from methanogenic archaea catalyzes the final step of methane formation, in which methyl-coenzyme M (2-methylthioethanesulfonate, methyl-SCoM) is reduced with coenzyme B (N-(7-mercaptoheptanoyl)threonine phosphate, CoBSH) to form methane and the heterodisulfide CoBS-SCoM. The active dimeric form of MCR contains two Ni(I)-F(430) prosthetic groups, one in each monomer. This report describes studies of the reaction of the active Ni(I) state of MCR (MCR(red1)) with BES (2-bromoethanesulfonate) and CoBSH or its analogue, CoB(6)SH (N-(6-mercaptohexanoyl)threonine phosphate), by transient kinetic measurements using EPR and UV-visible spectroscopy and by global fits of the data. This reaction is shown to lead to the formation of three intermediates, the first of which is assigned as an alkyl-Ni(III) species that forms as the active Ni(I)-MCR(red1) state of the enzyme decays. Subsequently, a radical (MCR(BES) radical) is formed that was characterized by multifrequency electron paramagnetic resonance (EPR) studies at X- ( approximately 9 GHz), Q- ( approximately 35 GHz), and D- ( approximately 130 GHz) bands and by electron-nuclear double resonance (ENDOR) spectroscopy. The MCR(BES) radical is characterized by g-values at 2.00340 and 1.99832 and includes a strongly coupled nonexchangeable proton with a hyperfine coupling constant of 50 MHz. Based on transient kinetic measurements, the formation and decay of the radical coincide with a species that exhibits absorption peaks at 426 and 575 nm. Isotopic substitution, multifrequency EPR, and ENDOR spectroscopic experiments rule out the possibility that MCR(BES) is a tyrosyl radical and indicate that if a tyrosyl radical is formed during the reaction, it does not accumulate to detectable levels. The results provide support for a hybrid mechanism of methanogenesis by MCR that includes both alkyl-Ni and radical intermediates.


Assuntos
Ácidos Alcanossulfônicos/metabolismo , Methanobacteriaceae/química , Oxirredutases/metabolismo , Ácidos Alcanossulfônicos/química , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Methanobacteriaceae/enzimologia , Modelos Químicos
9.
Diabetes ; 67(2): 193-207, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29074597

RESUMO

Obesity is associated with elevated intracellular nitric oxide (NO) production, which promotes nitrosative stress in metabolic tissues such as liver and skeletal muscle, contributing to insulin resistance. The onset of obesity-associated insulin resistance is due, in part, to the compromise of hepatic autophagy, a process that leads to lysosomal degradation of cellular components. However, it is not known how NO bioactivity might impact autophagy in obesity. Here, we establish that S-nitrosoglutathione reductase (GSNOR), a major protein denitrosylase, provides a key regulatory link between inflammation and autophagy, which is disrupted in obesity and diabetes. We demonstrate that obesity promotes S-nitrosylation of lysosomal proteins in the liver, thereby impairing lysosomal enzyme activities. Moreover, in mice and humans, obesity and diabetes are accompanied by decreases in GSNOR activity, engendering nitrosative stress. In mice with a GSNOR deletion, diet-induced obesity increases lysosomal nitrosative stress and impairs autophagy in the liver, leading to hepatic insulin resistance. Conversely, liver-specific overexpression of GSNOR in obese mice markedly enhances lysosomal function and autophagy and, remarkably, improves insulin action and glucose homeostasis. Furthermore, overexpression of S-nitrosylation-resistant variants of lysosomal enzymes enhances autophagy, and pharmacologically and genetically enhancing autophagy improves hepatic insulin sensitivity in GSNOR-deficient hepatocytes. Taken together, our data indicate that obesity-induced protein S-nitrosylation is a key mechanism compromising the hepatic autophagy, contributing to hepatic insulin resistance.


Assuntos
Álcool Desidrogenase/metabolismo , Aldeído Oxirredutases/metabolismo , Autofagia , Diabetes Mellitus/metabolismo , Hepatócitos/metabolismo , Resistência à Insulina , Obesidade/fisiopatologia , Álcool Desidrogenase/química , Álcool Desidrogenase/genética , Aldeído Oxirredutases/química , Aldeído Oxirredutases/genética , Animais , Células Cultivadas , Cisteína/metabolismo , Diabetes Mellitus/enzimologia , Diabetes Mellitus/patologia , Dieta Hiperlipídica/efeitos adversos , Regulação Enzimológica da Expressão Gênica , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hepatócitos/enzimologia , Hepatócitos/patologia , Humanos , Lisossomos/enzimologia , Lisossomos/metabolismo , Lisossomos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Estresse Nitrosativo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão
10.
Cell Rep ; 19(11): 2244-2256, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28614712

RESUMO

Hexanucleotide repeat expansion in the C9ORF72 gene results in production of dipeptide repeat (DPR) proteins that may disrupt pre-mRNA splicing in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients. At present, the mechanisms underlying this mis-splicing are not understood. Here, we show that addition of proline-arginine (PR) and glycine-arginine (GR) toxic DPR peptides to nuclear extracts blocks spliceosome assembly and splicing, but not other types of RNA processing. Proteomic and biochemical analyses identified the U2 small nuclear ribonucleoprotein particle (snRNP) as a major interactor of PR and GR peptides. In addition, U2 snRNP, but not other splicing factors, mislocalizes from the nucleus to the cytoplasm both in C9ORF72 patient induced pluripotent stem cell (iPSC)-derived motor neurons and in HeLa cells treated with the toxic peptides. Bioinformatic studies support a specific role for U2-snRNP-dependent mis-splicing in C9ORF72 patient brains. Together, our data indicate that DPR-mediated dysfunction of U2 snRNP could account for as much as ∼44% of the mis-spliced cassette exons in C9ORF72 patient brains.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/metabolismo , Dipeptídeos/farmacologia , Demência Frontotemporal/genética , RNA Nuclear Pequeno/metabolismo , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Expansão das Repetições de DNA , Dipeptídeos/metabolismo , Demência Frontotemporal/imunologia , Demência Frontotemporal/metabolismo , Humanos , Proteômica/métodos , Splicing de RNA , RNA Nuclear Pequeno/genética , Ribonucleoproteína Nuclear Pequena U2/genética , Ribonucleoproteína Nuclear Pequena U2/metabolismo
11.
Elife ; 62017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28885975

RESUMO

Wnt5a-Ror signaling constitutes a developmental pathway crucial for embryonic tissue morphogenesis, reproduction and adult tissue regeneration, yet the molecular mechanisms by which the Wnt5a-Ror pathway mediates these processes are largely unknown. Using a proteomic screen, we identify the kinesin superfamily protein Kif26b as a downstream target of the Wnt5a-Ror pathway. Wnt5a-Ror, through a process independent of the canonical Wnt/ß-catenin-dependent pathway, regulates the cellular stability of Kif26b by inducing its degradation via the ubiquitin-proteasome system. Through this mechanism, Kif26b modulates the migratory behavior of cultured mesenchymal cells in a Wnt5a-dependent manner. Genetic perturbation of Kif26b function in vivo caused embryonic axis malformations and depletion of primordial germ cells in the developing gonad, two phenotypes characteristic of disrupted Wnt5a-Ror signaling. These findings indicate that Kif26b links Wnt5a-Ror signaling to the control of morphogenetic cell and tissue behaviors in vertebrates and reveal a new role for regulated proteolysis in noncanonical Wnt5a-Ror signal transduction.


Assuntos
Cinesinas/metabolismo , Transdução de Sinais , Proteína Wnt-5a/metabolismo , Animais , Linhagem Celular , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Cinesinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Morfogênese/efeitos dos fármacos , Proteômica , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Via de Sinalização Wnt , Proteína Wnt-5a/farmacologia , beta Catenina/metabolismo
12.
Science ; 349(6247): 500-6, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26228140

RESUMO

The association between inflammation and endoplasmic reticulum (ER) stress has been observed in many diseases. However, if and how chronic inflammation regulates the unfolded protein response (UPR) and alters ER homeostasis in general, or in the context of chronic disease, remains unknown. Here, we show that, in the setting of obesity, inflammatory input through increased inducible nitric oxide synthase (iNOS) activity causes S-nitrosylation of a key UPR regulator, IRE1α, which leads to a progressive decline in hepatic IRE1α-mediated XBP1 splicing activity in both genetic (ob/ob) and dietary (high-fat diet-induced) models of obesity. Finally, in obese mice with liver-specific IRE1α deficiency, reconstitution of IRE1α expression with a nitrosylation-resistant variant restored IRE1α-mediated XBP1 splicing and improved glucose homeostasis in vivo. Taken together, these data describe a mechanism by which inflammatory pathways compromise UPR function through iNOS-mediated S-nitrosylation of IRE1α, which contributes to defective IRE1α activity, impaired ER function, and prolonged ER stress in obesity.


Assuntos
Proteínas de Ligação a DNA/genética , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Endorribonucleases/metabolismo , Óxidos de Nitrogênio/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Splicing de RNA , Fatores de Transcrição/genética , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Glucose/metabolismo , Homeostase , Inflamação/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Obesos , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição de Fator Regulador X , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box
13.
Cell Rep ; 11(2): 295-307, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25843719

RESUMO

Aberrant stress and inflammatory responses are key factors in the pathogenesis of obesity and metabolic dysfunction, and the double-stranded RNA-dependent kinase (PKR) has been proposed to play an important role in integrating these pathways. Here, we report the formation of a complex between PKR and TAR RNA-binding protein (TRBP) during metabolic and obesity-induced stress, which is critical for the regulation of eukaryotic translation initiation factor 2 alpha (eIF2α) phosphorylation and c-Jun N-terminal kinase (JNK) activation. We show that TRBP phosphorylation is induced in the setting of metabolic stress, leading to PKR activation. Suppression of hepatic TRBP reduced inflammation, JNK activity, and eIF2α phosphorylation and improved systemic insulin resistance and glucose metabolism, while TRBP overexpression exacerbated the impairment in glucose homeostasis in obese mice. These data indicate that the association between PKR and TRBP integrates metabolism with translational control and inflammatory signaling and plays important roles in metabolic homeostasis and disease.


Assuntos
Inflamação/metabolismo , Obesidade/metabolismo , Proteínas de Ligação a RNA/metabolismo , eIF-2 Quinase/metabolismo , Animais , Fator de Iniciação 2 em Eucariotos/biossíntese , Glucose/metabolismo , Humanos , Inflamação/genética , Inflamação/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/biossíntese , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Obesos , Complexos Multiproteicos/genética , Obesidade/genética , Obesidade/patologia , Fosforilação , Proteínas de Ligação a RNA/genética , Estresse Fisiológico , eIF-2 Quinase/genética
14.
Mol Cell Biol ; 32(2): 541-57, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22106412

RESUMO

Meiosis divides the chromosome number of the cell in half by having two rounds of chromosome segregation follow a single round of chromosome duplication. The first meiotic division is unique in that homologous pairs of sister chromatids segregate to opposite poles. Recent work in budding and fission yeast has shown that the cell cycle kinase, Cdc7-Dbf4, is required for many meiosis-specific chromosomal functions necessary for proper disjunction at meiosis I. This work reveals another role for Cdc7 in meiosis as a gene-specific regulator of the global transcription factor, Ndt80, which is required for exit from pachytene and entry into the meiotic divisions in budding yeast. Cdc7-Dbf4 promotes NDT80 transcription by relieving repression mediated by a complex of Sum1, Rfm1, and a histone deacetylase, Hst1. Sum1 exhibits meiosis-specific Cdc7-dependent phosphorylation, and mass spectrometry analysis reveals a dynamic and complex pattern of phosphorylation events, including four constitutive cyclin-dependent kinase (Cdk1) sites and 11 meiosis-specific Cdc7-Dbf4-dependent sites. Analysis of various phosphorylation site mutants suggests that Cdc7 functions with both Cdk1 and the meiosis-specific kinase Ime2 to control this critical transition point during meiosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/metabolismo , Meiose , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Sirtuína 2/genética , Sirtuína 2/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
15.
Nat Biotechnol ; 27(10): 933-40, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19801977

RESUMO

Constitutive activation of one or more kinase signaling pathways is a hallmark of many cancers. Here we extend the previously described mass spectrometry-based KAYAK approach by monitoring kinase activities from multiple signaling pathways simultaneously. This improved single-reaction strategy, which quantifies the phosphorylation of 90 synthetic peptides in a single mass spectrometry run, is compatible with nanogram to microgram amounts of cell lysate. Furthermore, the approach enhances kinase monospecificity through substrate competition effects, faithfully reporting the signatures of many signaling pathways after mitogen stimulation or of basal pathway activation differences across a panel of well-studied cancer cell lines. Hierarchical clustering of activities from related experiments groups peptides phosphorylated by similar kinases together and, when combined with pathway alteration using pharmacological inhibitors, distinguishes underlying differences in potency, off-target effects and genetic backgrounds. Finally, we introduce a strategy to identify the kinase, and even associated protein complex members, responsible for phosphorylation events of interest.


Assuntos
Biologia Computacional/métodos , Espectrometria de Massas/métodos , Proteínas Quinases/metabolismo , Proteína Quinase CDC2 , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Análise por Conglomerados , Ciclina B/metabolismo , Quinases Ciclina-Dependentes , Fator de Crescimento Epidérmico/farmacologia , Células HeLa , Humanos , Insulina/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais , Acetato de Tetradecanoilforbol/farmacologia
16.
Biochemistry ; 47(8): 2661-7, 2008 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-18220418

RESUMO

Methyl-coenzyme M reductase (MCR) catalyzes the terminal step in methanogenesis by using N-7-mercaptoheptanolyl-threonine phosphate (CoBSH) as the two-electron donor to reduce 2-(methylthiol)ethane sulfonate (methyl-SCoM) to methane, and producing the heterodisulfide, CoBS-SCoM. The active site of MCR includes a noncovalently bound Ni tetrapyrrolic cofactor called coenzyme F430, which is in the Ni(I) state in the active enzyme (MCRred1). Bromopropanesulfonate (BPS) is a potent inhibitor and reversible redox inactivator that reacts with MCRred1 to form an EPR-active state called MCRPS, which is an alkyl-nickel species. When MCRPS is treated with free thiol containing compounds, the enzyme is reconverted to the active MCRred1 state. In this paper, we demonstrate that the reactivation of MCRPS to MCRred1 by thiols involves formation of a thioether product. MCRPS also can be converted to active MCRred1 by treatment with sodium borohydride. Reactivation is highest with the smallest free thiol HS-. Interestingly, MCRPS can also be reductively activated with analogues of CoBSH such as CoB8SH and CoB9SH, but not CoBSH itself. Unambiguous demonstration of the formation of a methylthioether product from thiolysis of an alkyl-Ni species provides support for a methyl-Ni intermediate in the MCR-catalyzed last step in methanogenesis and the first proposed step in anaerobic methane oxidation.


Assuntos
Níquel/química , Oxirredutases/química , Oxirredutases/metabolismo , Sulfetos/análise , Sulfetos/metabolismo , Catálise , Ativação Enzimática , Hidrólise , Espectrometria de Massas , Methanobacteriaceae/enzimologia , Methanobacteriaceae/metabolismo , Modelos Biológicos , Compostos de Sulfidrila/farmacologia
17.
Biochemistry ; 46(42): 11969-78, 2007 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17902704

RESUMO

Methyl-coenzyme M reductase (MCR) from methanogenic archaea catalyzes the final step in the biological synthesis of methane. Using coenzyme B (CoBSH) as the two-electron donor, MCR reduces methyl-coenzyme M (methyl-SCoM) to methane and the mixed disulfide, CoB-S-S-CoM. MCR contains coenzyme F430, an essential redox-active nickel tetrahydrocorphin, at its active site. The active form of MCR (MCRred1) contains Ni(I)-F430. When 3-bromopropane sulfonate (BPS) is incubated with MCRred1, an alkyl-Ni(III) species is formed that elicits the MCRPS EPR signal. Here we used EPR and UV-visible spectroscopy and transient kinetics to study the reaction between MCR from Methanothermobacter marburgensis and a series of brominated carboxylic acids, with carbon chain lengths of 4-16. All of these compounds give rise to an alkyl-Ni intermediate with an EPR signal similar to that of the MCRPS species. Reaction of the alkyl-Ni(III) adduct, formed from brominated acids with eight or fewer total carbons, with HSCoM as nucleophile at pH 10.0 results in the formation of a thioether coupled to regeneration of the active MCRred1 state. When reacted with 4-bromobutyrate, MCRred1 forms the alkyl-Ni(III) MCRXA state and then, surprisingly, undergoes "self-reactivation" to regenerate the Ni(I) MCRred1 state and a bromocarboxy ester. The results demonstrate an unexpected reactivity and flexibility of the MCR active site in accommodating a broad range of substrates, which act as molecular rulers for the substrate channel in MCR.


Assuntos
Ácidos Alcanossulfônicos/metabolismo , Ácidos Carboxílicos/metabolismo , Níquel/química , Oxirredutases/metabolismo , Ácidos Alcanossulfônicos/química , Sítios de Ligação , Ácidos Carboxílicos/química , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Methanobacteriaceae/enzimologia , Modelos Químicos , Estrutura Molecular , Níquel/metabolismo , Oxirredutases/química , Oxirredutases/isolamento & purificação , Ligação Proteica , Espectrofotometria Ultravioleta
18.
J Biol Chem ; 281(45): 34663-76, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-16966321

RESUMO

Methyl-coenzyme M reductase (MCR) catalyzes the final step of methanogenesis in which coenzyme B and methyl-coenzyme M are converted to methane and the heterodisulfide, CoMS-SCoB. MCR also appears to initiate anaerobic methane oxidation (reverse methanogenesis). At the active site of MCR is coenzyme F430, a nickel tetrapyrrole. This paper describes the reaction of the active MCR(red1) state with the potent inhibitor, 3-bromopropanesulfonate (BPS; I50 = 50 nM) by UV-visible and EPR spectroscopy and by steady-state and rapid kinetics. BPS was shown to be an alternative substrate of MCR in an ionic reaction that is coenzyme B-independent and leads to debromination of BPS and formation of a distinct state ("MCR(PS)") with an EPR signal that was assigned to a Ni(III)-propylsulfonate species (Hinderberger, D., Piskorski, R. P., Goenrich, M., Thauer, R. K., Schweiger, A., Harmer, J., and Jaun, B. (2006) Angew. Chem. Int. Ed. Engl. 45, 3602-3607). A similar EPR signal was generated by reacting MCR(red1) with several halogenated sulfonate and carboxylate substrates. In rapid chemical quench experiments, the propylsulfonate ligand was identified by NMR spectroscopy and high performance liquid chromatography as propanesulfonic acid after protonolysis of the MCR(PS) complex. Propanesulfonate formation was also observed in steady-state reactions in the presence of Ti(III) citrate. Reaction of the alkylnickel intermediate with thiols regenerates the active MCR(red1) state and eliminates the propylsulfonate group, presumably as the thioether. MCR(PS) is catalytically competent in both the generation of propanesulfonate and reformation of MCR(red1). These results provide evidence for the intermediacy of an alkylnickel species in the final step in anaerobic methane oxidation and in the initial step of methanogenesis.


Assuntos
Ácidos Alcanossulfônicos/metabolismo , Oxirredutases/química , Ácidos Alcanossulfônicos/química , Sítios de Ligação , Catálise , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Espectroscopia de Ressonância Magnética , Methanobacterium/enzimologia , Methanobacterium/crescimento & desenvolvimento , Níquel/química , Níquel/metabolismo , Oxirredução , Oxirredutases/metabolismo , Especificidade por Substrato
19.
Biochemistry ; 45(39): 11915-33, 2006 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-17002292

RESUMO

Methyl-coenzyme M reductase (MCR) catalyzes the final step in methane biosynthesis by methanogenic archaea and contains a redox-active nickel tetrahydrocorphin, coenzyme F430, at its active site. Spectroscopic and computational methods have been used to study a novel form of the coenzyme, called F330, which is obtained by reducing F430 with sodium borohydride (NaBH4). F330 exhibits a prominent absorption peak at 330 nm, which is blue shifted by 100 nm relative to F430. Mass spectrometric studies demonstrate that the tetrapyrrole ring in F330 has undergone reduction, on the basis of the incorporation of protium (or deuterium), upon treatment of F430 with NaBH4 (or NaBD4). One- and two-dimensional NMR studies show that the site of reduction is the exocyclic ketone group of the tetrahydrocorphin. Resonance Raman studies indicate that elimination of this pi-bond increases the overall pi-bond order in the conjugative framework. X-ray absorption, magnetic circular dichroism, and computational results show that F330 contains low-spin Ni(II). Thus, conversion of F430 to F330 reduces the hydrocorphin ring but not the metal. Conversely, reduction of F430 with Ti(III) citrate to generate F380 (corresponding to the active MCR(red1) state) reduces the Ni(II) to Ni(I) but does not reduce the tetrapyrrole ring system, which is consistent with other studies [Piskorski, R., and Jaun, B. (2003) J. Am. Chem. Soc. 125, 13120-13125; Craft, J. L., et al. (2004) J. Biol. Inorg. Chem. 9, 77-89]. The distinct origins of the absorption band shifts associated with the formation of F330 and F380 are discussed within the framework of our computational results. These studies on the nature of the product(s) of reduction of F430 are of interest in the context of the mechanism of methane formation by MCR and in relation to the chemistry of hydroporphinoid systems in general. The spectroscopic and time-dependent DFT calculations add important insight into the electronic structure of the nickel hydrocorphinate in its Ni(II) and Ni(I) valence states.


Assuntos
Proteínas Arqueais/química , Metaloporfirinas/química , Methanobacteriaceae/enzimologia , Modelos Químicos , Níquel/química , Oxirredutases/química , Titânio/química , Simulação por Computador , Methanobacteriaceae/química , Ressonância Magnética Nuclear Biomolecular/métodos , Oxirredução , Análise Espectral Raman
20.
Microbiology (Reading) ; 151(Pt 10): 3417-3426, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16207923

RESUMO

Improvements in the purification of methanobactin (mb) from either Methylosinus trichosporium OB3b(T) or Methylococcus capsulatus Bath resulted in preparations that stimulated methane-oxidation activity in both whole-cell and cell-free fractions of Methylococcus capsulatus Bath expressing the membrane-associated methane monooxygenase (pMMO). By using washed membrane factions with pMMO activities in the 290 nmol propylene oxidized min(-1) (mg protein)(-1) range, activities approaching 400 nmol propylene oxidized min(-1) (mg protein)(-1) were commonly observed following addition of copper-containing mb (Cu-mb), which represented 50-75 % of the total whole-cell activity. The stimulation of methane-oxidation activity by Cu-mb was similar to or greater than that observed with equimolar concentrations of Cu(II), without the inhibitory effects observed with high copper concentrations. Stimulation of pMMO activity was not observed with copper-free mb, nor was it observed when the copper-to-mb ratio was <0.5 Cu atoms per mb. The electron paramagnetic resonance (EPR) spectra of mb differed depending on the copper-to-mb ratio. At copper-to-mb ratios of <0.4 Cu(II) per mb, Cu(II) addition to mb showed an initial coordination by both sulfur and nitrogen, followed by reduction to Cu(I) in <2 min. At Cu(II)-to-mb ratios between 0.4 and 0.9 Cu(II) per mb, the intensity of the Cu(II) signal in EPR spectra was more representative of the Cu(II) added and indicated more nitrogen coordination. The EPR spectral properties of mb and pMMO were also examined in the washed membrane fraction following the addition of Cu(II), mb and Cu-mb in the presence or absence of reductants (NADH or duroquinol) and substrates (CH4 and/or O2). The results indicated that Cu-mb increased electron flow to the pMMO, increased the free radical formed following the addition of O2 and decreased the residual free radical following the addition of O2 plus CH4. The increase in pMMO activity and EPR spectral changes to the pMMO following Cu-mb addition represent the first positive evidence of interactions between the pMMO and Cu-mb.


Assuntos
Membrana Celular/enzimologia , Imidazóis/farmacologia , Methylococcus capsulatus/enzimologia , Oligopeptídeos/farmacologia , Oxigenases/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Cobre/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Metano/metabolismo , Methylococcus capsulatus/efeitos dos fármacos , Oxirredução , Oxigenases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA