Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Macromol Rapid Commun ; : e2400263, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878267

RESUMO

The Expansion of modern industry underscores the urgent need to address heavy metal pollution, which is a threat to human-health and environment. Efforts are underwent to develop precise technologies for detecting heavy metal ions (M+-ion). One promising approach involves the use of Conjugated Microporous Polymers (CMPs) modified with Triphenylamine (TPA) anderylene (Peryl), known as TPA-Peryl-CMP, which emits strong refluorescence. Various analytical techniques, such as Brunauer-Emmett-Teller analysis, Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis (TGA), are utilized to characterize the synthesized TPA-Peryl-CMP and understand its functional properties. In addition to its remarkable fluorescence behavior, TPA-Peryl-CMP shows promise as a sensor for Fe3+ ions using a turn-off strategy. Due to its exceptional stability and robust π-electron system, this platform demonstrates remarkable sensitivity and selectivity, significantly improving detection capabilities for specific analytes. Detailed procedures related to the mechanism for detecting Fe3+ ions are outlined for sensing Fe3+ ions, revealing a notably strong linear correlation within the concentration range of 0-3 µM, with a correlation coefficient of 0.9936 and the Limit of detection (LOD) 20 nM. It is anticipated that development of such a kind of TPA-Peryl-CMP will observe broader applications in detecting various analytes related to environmental and biological systems.

2.
Small ; 19(30): e2302509, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37026662

RESUMO

Aerogels have provided a significant platform for passive radiation-enabled thermal regulation, arousing extensive interest due to their capabilities of radiative cooling or heating. However, there still remains challenge of developing functionally integrated aerogels for sustainable thermal regulation in both hot and cold environment. Here, Janus structured MXene-nanofibrils aerogel (JMNA) is rationally designed via a facile and efficient way. The achieved aerogel presents the characteristic of high porosity (≈98.2%), good mechanical strength (tensile stress of ≈2 MPa, compressive stress of ≈115 kPa), and macroscopic shaping property. Based on the asymmetric structure, the JMNA with switchable functional layers can alternatively enable passive radiative heating and cooling in winter and summer, respectively. As a proof of concept, JMNA can function as a switchable thermal-regulated roof to effectively enable the inner house model to maintain >25 °C in winter and <30 °C in hot summer. This design of Janus structured aerogels with compatible and expandable capabilities is promising to widely benefit the low-energy thermal regulation in changeable climate.

3.
Chemistry ; 29(30): e202300538, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-36932999

RESUMO

Anionic living polymerization was used to prepare a diblock copolymer of poly(styrene-b-4-vinyl pyridine) (PS-b-P4VP), and a phenolic resin with a double-decker silsesquioxane (DDSQ) cage structure was used to form a phenolic/DDSQ hybrid (PDDSQ-30 with 30 wt.% DDSQ). Strong intermolecular hydrogen bonding could be confirmed through the hydroxyl (OH) groups of PDDSQ hybrid with the pyridine group of the P4VP block in PDDSQ-30/PS-b-P4VP blends based on Fourier transform infrared spectroscopy analyses, where increasing PDDSQ concentrations resulted in a higher proportion of hydrogen-bonded pyridine groups. After thermal polymerization at 180 °C, the self-assembled structures of these PDDSQ/PS-b-P4VP blends were revealed by data from small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), where the d-spacing increased with raising PDDSQ concentration. Because relatively higher thermal stability of the PDDSQ hybrid than pure phenolic resin and PS-b-P4VP template, we can obtain the long ranger order of mesoporous PDDSQ hybrids after removing the PS-b-P4VP template, which reveals the high surface area and high pore volume with cylindrical and spherical structures corresponding to the PDDSQ compositions that are rarely observed by using pure phenolic resin as the matrix and could be used in supercapacitor application.

4.
Soft Matter ; 19(25): 4706-4716, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37314312

RESUMO

This study describes the preparation of hydrogen bonding connected micelles, consisting of a poly(styrene-alt-(para-hydroxyphenylmaleimide)) [poly(S-alt-pHPMI)] core and a poly(4-vinylpyridine) (P4VP) derivative shell in a selective solvent. The aim was to modify hydrogen bonding interaction sites at the core/shell interface by synthesizing P4VP derivatives in three different sequences, namely, P4VP homopolymers, PS-co-P4VP random copolymers, and block copolymers. TEM images showed the successful self-assembly of poly(S-alt-pHPMI)/PS-co-P4VP inter-polymer complexes into spherical structures. To dissolve the core structures, 1,4-dibromobutane was used as a cross-linking agent to tighten the PS-co-P4VP shell. The morphologies, particle sizes, hydrogen bonding, cross-linking reaction, and core dissolution were confirmed by TEM, DLS, FTIR, and AFM analyses. Poly(S-alt-pHPMI)/PS41-r-P4VP59 hydrogen bonding connected micelles, cross-linked micelles, and hollow spheres were larger and more irregular than poly(S-alt-pHPMI)/P4VP inter-polymer complexes due to the random copolymer architecture and the decrease in intermolecular hydrogen bonds. However, poly(S-alt-pHPMI)/PS68-b-P4VP32 resulted in rod- or worm-like structures after core dissolution.

5.
Macromol Rapid Commun ; 44(10): e2200910, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37017474

RESUMO

This work synthesizes a new bifunctional furan derivative (PDMS-FBZ) through a sequence of hydrosilylation of nadic anhydride (ND) with polydimethylsiloxane (PDMS), reaction of the product with p-aminophenol to form PDMS-ND-OH, and its subsequent Mannich reaction with furfurylamine and CH2 O. Then, the main chain-type copolymer PDMS-DABZ-DDSQ is prepared through a Diels-Alder (DA) cycloaddition of PDMS-FBZ with the bismaleimide-functionalized double-decker silsesquioxane derivative DDSQ-BMI. Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy confirm the structure of this PDMS-DABZ-DDSQ copolymer; differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA) reveal it to have high flexibility and high thermal stability (Tg = 177 °C; Td10 = 441 °C; char yield = 60.1 wt%); contact angle measurements reveal a low surface free energy (18.18 mJ m-2 ) after thermal ring-opening polymerization, because the inorganic PDMS and DDSQ units are dispersed well, as revealed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). This PDMS-DABZ-DDSQ copolymer possesses reversible properties arising from the DA and retro-DA reactions, suggesting its possible application as a functional high-performance material.


Assuntos
Benzoxazinas , Polímeros , Reação de Cicloadição , Benzoxazinas/química , Polímeros/química , Microscopia Eletrônica de Varredura , Dimetilpolisiloxanos
6.
Nano Lett ; 22(23): 9343-9350, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36377801

RESUMO

In nature, deep-sea fish featured with close-packed melanosomes can remarkably lower light reflection, which have inspired us to design ultrablack coatings for enhanced solar-to-thermal conversion. Herein, a biomimetic ultrablack textile is developed enabled by the formation of hierarchical polypyrrole (Ppy) nanospheres. The fabricated textile exhibits prominently suppressed reflectance of lower than 4% and highly enhanced absorption of up to 96%. Further experimental results and molecular dynamics (MD) simulation evidence the formation process of hierarchical nanospheres. Based on high-efficient solar-to-thermal conversion, the biomimetic textile with desirable conductivity allows the development of a salt-free solar evaporator, enabling a sustainable seawater evaporation rate of up to 1.54 kg m-2 h-1 under 1 sun. Furthermore, the biomimetic hierarchical textile exhibits good superhydrophobicity, enhanced photothermal property, and high electrothermal conversion, demonstrating significant potential in wearable thermal management (rescue vests) in water conditions.


Assuntos
Biomimética , Nanoestruturas , Animais , Polímeros , Pirróis , Têxteis
7.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36768824

RESUMO

We synthesized two hybrid organic-inorganic porous polymers (HPP) through the Heck reaction of 9,10 dibromoanthracene (A-Br2) or 1,3,6,8-tetrabromopyrene (P-Br4)/A-Br2 as co-monomers with octavinylsilsesquioxane (OVS), in order to afford OVS-A HPP and OVS-P-A HPP, respectively. The chemical structures of these two hybrid porous polymers were validated through FTIR and solid-state 13C and 29Si NMR spectroscopy. The thermal stability and porosity of these materials were measured by TGA and N2 adsorption/desorption analyses, demonstrating that OVS-A HPP has higher thermal stability (Td10: 579 °C) and surface area (433 m2 g-1) than OVS-P-A HPP (Td10: 377 °C and 98 m2 g-1) due to its higher cross-linking density. Furthermore, the electrochemical analysis showed that OVS-P-A HPP has a higher specific capacitance (177 F g -1 at 0.5 A F g-1) when compared to OVS-A HPP (120 F g -1 at 0.5 A F g-1). The electron-rich phenyl rings and Faradaic reaction between the π-conjugated network and anthracene moiety may be attributed to their excellent electrochemical performance of OVS-P-A HPP.


Assuntos
Antracenos , Pirenos , Porosidade , Eletrodos , Polímeros
8.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37569744

RESUMO

This work focuses on porous organic polymers (POPs), which have gained significant global attention for their potential in energy storage and carbon dioxide (CO2) capture. The study introduces the development of two novel porous organic polymers, namely FEC-Mel and FEC-PBDT POPs, constructed using a simple method based on the ferrocene unit (FEC) combined with melamine (Mel) and 6,6'-(1,4-phenylene)bis(1,3,5-triazine-2,4-diamine) (PBDT). The synthesis involved the condensation reaction between ferrocenecarboxaldehyde monomer (FEC-CHO) and the respective aryl amines. Several analytical methods were employed to investigate the physical characteristics, chemical structure, morphology, and potential applications of these porous materials. Through thermogravimetric analysis (TGA), it was observed that both FEC-Mel and FEC-PBDT POPs exhibited exceptional thermal stability. FEC-Mel POP displayed a higher surface area and porosity, measuring 556 m2 g-1 and 1.26 cm3 g-1, respectively. These FEC-POPs possess large surface areas, making them promising materials for applications such as supercapacitor (SC) electrodes and gas adsorption. With 82 F g-1 of specific capacitance at 0.5 A g-1, the FEC-PBDT POP electrode has exceptional electrochemical characteristics. In addition, the FEC-Mel POP showed remarkable CO2 absorption capabilities, with 1.34 and 1.75 mmol g-1 (determined at 298 and 273 K; respectively). The potential of the FEC-POPs created in this work for CO2 capacity and electrical testing are highlighted by these results.


Assuntos
Dióxido de Carbono , Polímeros , Metalocenos , Porosidade
9.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240313

RESUMO

In this study, we synthesized two conjugated microporous polymers (CMPs), An-Ph-TPA and An-Ph-Py CMPs, using the Suzuki cross-coupling reaction. These CMPs are organic polymers with p-conjugated skeletons and persistent micro-porosity and contain anthracene (An) moieties linked to triphenylamine (TPA) and pyrene (Py) units. We characterized the chemical structures, porosities, thermal stabilities, and morphologies of the newly synthesized An-CMPs using spectroscopic, microscopic, and N2 adsorption/desorption isotherm techniques. Our results from thermogravimetric analysis (TGA) showed that the An-Ph-TPA CMP displayed better thermal stability with Td10 = 467 °C and char yield of 57 wt% compared to the An-Ph-Py CMP with Td10 = 355 °C and char yield of 54 wt%. Furthermore, we evaluated the electrochemical performance of the An-linked CMPs and found that the An-Ph-TPA CMP had a higher capacitance of 116 F g-1 and better capacitance stability of 97% over 5000 cycles at 10 A g-1. In addition, we assessed the biocompatibility and cytotoxicity of An-linked CMPs using the MTT assay and a live/dead cell viability assay and observed that they were non-toxic and biocompatible with high cell viability values after 24 or 48 h of incubation. These findings suggest that the An-based CMPs synthesized in this study have potential applications in electrochemical testing and the biological field.


Assuntos
Aminas , Polímeros , Polímeros/química , Adsorção , Antracenos
10.
Molecules ; 28(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37049996

RESUMO

We have successfully synthesized two types of two-dimensional conjugated microporous polymers (CMPs), Py-BSU and TBN-BSU CMPs, by using the Sonogashira cross-coupling reaction of BSU-Br2 (2,8-Dibromothianthrene-5,5',10,10'-Tetraoxide) with Py-T (1,3,6,8-Tetraethynylpyrene) and TBN-T (2,7,10,15-Tetraethynyldibenzo[g,p]chrysene), respectively. We characterized the chemical structure, morphology, physical properties, and potential applications of these materials using various analytical instruments. Both Py-BSU and TBN-BSU CMPs showed high thermal stability with thermal decomposition temperatures (Td10) up to 371 °C and char yields close to 48 wt%, as determined by thermogravimetric analysis (TGA). TBN-BSU CMPs exhibited a higher specific surface area and porosity of 391 m2 g-1 and 0.30 cm3 g-1, respectively, due to their large micropore and mesopore structure. These CMPs with extended π-conjugated frameworks and high surface areas are promising organic electroactive materials that can be used as electrode materials for supercapacitors (SCs) and gas adsorption. Our experimental results demonstrated that the TBN-BSU CMP electrode had better electrochemical characteristics with a longer discharge time course and a specific capacitance of 70 F g-1. Additionally, the electrode exhibited an excellent capacitance retention rate of 99.9% in the 2000-cycle stability test. The CO2 uptake capacity of TBN-BSU CMP and Py-BSU CMP were 1.60 and 1.45 mmol g-1, respectively, at 298 K and 1 bar. These results indicate that the BSU-based CMPs synthesized in this study have potential applications in electrical testing and CO2 capture.

11.
Soft Matter ; 18(30): 5535-5561, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35880446

RESUMO

This Review describes recent progress in the self-assembly of organic/inorganic POSS hybrids derived from mono-, di-, and multi-functionalized POSS cages. We highlight the self-assembled structures and physical properties of giant surfactants and chain-end- and side-chain-type hybrids derived from mono-functionalized POSS cages; main-chain-type hybrids derived from di-functionalized POSS cages; and star-shaped hybrids derived from multi-functionalized POSS cages; with various polymeric attachments, including polystyrene, poly(methyl methacrylate), phenolic, PVPh, and polypeptides.

12.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806022

RESUMO

In this study, we synthesized a poly(cyclohexene carbonate) (PCHC) through alternative ring-opening copolymerization of CO2 with cyclohexene oxide (CHO) mediated by a binary LZn2OAc2 catalyst at a mild temperature. A two-dimensional Fourier transform infrared (2D FTIR) spectroscopy indicated that strong intramolecular [C-H···O=C] hydrogen bonding (H-bonding) occurred in the PCHC copolymer, thereby weakening its intermolecular interactions and making it difficult to form miscible blends with other polymers. Nevertheless, blends of PCHC with poly(vinyl phenol) (PVPh), a strong hydrogen bond donor, were miscible because intermolecular H-bonding formed between the PCHC C=O units and the PVPh OH units, as evidenced through solid state NMR and one-dimensional and 2D FTIR spectroscopic analyses. Because the intermolecular H-bonding in the PCHC/PVPh binary blends were relatively weak, a negative deviation from linearity occurred in the glass transition temperatures (Tg). We measured a single proton spin-lattice relaxation time from solid state NMR spectra recorded in the rotating frame [T1ρ(H)], indicating full miscibility on the order of 2-3 nm; nevertheless, the relaxation time exhibited a positive deviation from linearity, indicating that the hydrogen bonding interactions were weak, and that the flexibility of the main chain was possibly responsible for the negative deviation in the values of Tg.


Assuntos
Dióxido de Carbono , Fenol , Cicloexenos , Resinas Epóxi , Ligação de Hidrogênio , Fenóis/química , Polímeros/química , Cloreto de Polivinila , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328595

RESUMO

Conductive and porous nitrogen-rich materials have great potential as supercapacitor electrode materials. The exceptional efficiency of such compounds, however, is dependent on their larger surface area and the level of nitrogen doping. To address these issues, we synthesized a porous covalent triazine framework (An-CTFs) based on 9,10-dicyanoanthracene (An-CN) units through an ionothermal reaction in the presence of different molar ratios of molten zinc chloride (ZnCl2) at 400 and 500 °C, yielding An-CTF-10-400, An-CTF-20-400, An-CTF-10-500, and An-CTF-20-500 microporous materials. According to N2 adsorption-desorption analyses (BET), these An-CTFs produced exceptionally high specific surface areas ranging from 406-751 m2·g-1. Furthermore, An-CTF-10-500 had a capacitance of 589 F·g-1, remarkable cycle stability up to 5000 cycles, up to 95% capacity retention, and strong CO2 adsorption capacity up to 5.65 mmol·g-1 at 273 K. As a result, our An-CTFs are a good alternative for both electrochemical energy storage and CO2 uptake.


Assuntos
Estruturas Metalorgânicas , Triazinas , Adsorção , Antracenos , Dióxido de Carbono/química , Nitrogênio/química , Triazinas/química
14.
Molecules ; 27(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36234775

RESUMO

In this study, we synthesized three hybrid microporous polymers through Heck couplings of octavinylsilsesquioxane (OVS) with 2,5-bis(4-bromophenyl)-1,3,4-oxadiazole (OXD-Br2), tetrabromothiophene (Th-Br4), and 2,5-bis(4-bromophenyl)-3,4-diphenylthiophene (TPTh-Br2), obtaining the porous organic-inorganic polymers (POIPs) POSS-OXD, POSS-Th, and POSS-TPTh, respectively. Fourier transform infrared spectroscopy and solid state 13C and 29Si NMR spectroscopy confirmed their chemical structures. Thermogravimetric analysis revealed that, among these three systems, the POSS-Th POIP possessed the highest thermal stability (T5: 586 °C; T10: 785 °C; char yield: 90 wt%), presumably because of a strongly crosslinked network formed between its OVS and Th moieties. Furthermore, the specific capacity of the POSS-TPTh POIP (354 F g-1) at 0.5 A g-1 was higher than those of the POSS-Th (213 F g-1) and POSS-OXD (119 F g-1) POIPs. We attribute the superior electrochemical properties of the POSS-TPTh POIP to its high surface area and the presence of electron-rich phenyl groups within its structure.

15.
Molecules ; 27(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144673

RESUMO

In this study, we prepared a difunctionalized cyanate ester double-decker silsesquioxane (DDSQ-OCN) cage with a char yield and thermal decomposition temperature (Td) which were both much higher than those of a typical bisphenol A dicyanate ester (BADCy, without the DDSQ cage) after thermal polymerization. Here, the inorganic DDSQ nanomaterial improved the thermal behavior through a nano-reinforcement effect. Blending the inorganic DDSQ-OCN cage into the epoxy resin improved its thermal and mechanical stabilities after the ring-opening polymerization of the epoxy units during thermal polymerization. The enhancement in the physical properties arose from the copolymerization of the epoxy and OCN units to form the organic/inorganic covalently bonded network structure, as well as the hydrogen bonding of the OH groups of the epoxy with the SiOSi moieties of the DDSQ units. For example, the epoxy/DDSQ-OCN = 1/1 hybrid, prepared without Cu(II)-acac as a catalyst, exhibited a glass transition temperature, thermal decomposition temperature (Td), and char yield (166 °C, 427 °C, and 51.0 wt%, respectively) that were significantly higher than those obtained when applying typical organic curing agents in the epoxy resin. The addition of Cu(II)-acac into the epoxy/BADCy and epoxy/DDSQ-OCN hybrids decreased the thermal stability (as characterized by the values of Td and the char yields) because the crosslinking density and post-hardening also decreased during thermal polymerization; nevertheless, it accelerated the thermal polymerization to a lower curing peak temperature, which is potentially useful for real applications as epoxy molding compounds.

16.
Molecules ; 27(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35335388

RESUMO

In recent years, conjugated microporous polymers (CMPs) have become important precursors for environmental and energy applications, compared with inorganic electrode materials, due to their ease of preparation, facile charge storage process, π-conjugated structures, relatively high thermal and chemical stability, abundance in nature, and high surface areas. Therefore, in this study, we designed and prepared new benzobisthiadiazole (BBT)-linked CMPs (BBT-CMPs) using a simple Sonogashira couplings reaction by reaction of 4,8-dibromobenzo(1,2-c;4,5-c')bis(1,2,5)thiadiazole (BBT-Br2) with ethynyl derivatives of triphenylamine (TPA-T), pyrene (Py-T), and tetraphenylethene (TPE-T), respectively, to afford TPA-BBT-CMP, Py-BBT-CMP, and TPE-BBT-CMP. The chemical structure and properties of BBT-CMPs such as surface areas, pore size, surface morphologies, and thermal stability using different measurements were discussed in detail. Among the studied BBT-CMPs, we revealed that TPE-BBT-CMP displayed high degradation temperature, up to 340 °C, with high char yield and regular, aggregated sphere based on thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively. Furthermore, the Py-BBT-CMP as organic electrode showed an outstanding specific capacitance of 228 F g-1 and superior capacitance stability of 93.2% (over 2000 cycles). Based on theoretical results, an important role of BBT-CMPs, due to their electronic structure, was revealed to be enhancing the charge storage. Furthermore, all three CMP polymers featured a high conjugation system, leading to improved electron conduction and small bandgaps.


Assuntos
Polímeros , Pirenos , Eletrodos , Elétrons , Polímeros/química
17.
Nanotechnology ; 32(30)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33827051

RESUMO

Schiff base formation reaction is highly dynamic, and the microstructure of Schiff base polymers is greatly affected by reaction kinetics. Herein, a series of Schiff base cross-linked polymers (SPs) with different morphologies are synthesized through adjusting the species and amount of catalysts. Nitrogen/oxygen co-doped hierarchical porous carbon nanoparticles (HPCNs), with tunable morphology, specific surface area (SSA) and porosity, are obtained after one-step carbonization. The optimal sample (HPCN-3) possesses a coral reef-like microstructure, high SSA up to 1003 m2g-1, and a hierarchical porous structure, exhibiting a remarkable specific capacitance of 359.5 F g-1(at 0.5 A g-1), outstanding rate capability and cycle stability in a 1 M H2SO4electrolyte. Additionally, the normalized electric double layer capacitance (EDLC) and faradaic capacitance of HPCN-3 are 0.239 F m-2and 10.24 F g-1respectively, certifying its superior electrochemical performance deriving from coral reef-like structure, high external surface area and efficient utilization of heteroatoms. The semi-solid-state symmetrical supercapacitor based on HPCN-3 delivers a capacitance of 55 F g-1at 0.5 A g-1, good cycle stability of 86.7% after 5000 GCD cycles at 10 A g-1, and the energy density ranges from 7.64 to 4.86 Wh kg-1.

18.
Macromol Rapid Commun ; 42(17): e2100302, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34216410

RESUMO

In this study the authors used an unusual linear symmetric poly(ethylene oxide-b-caprolactone) (PEO-b-PCL) diblock copolymer as a template within phenolic/double-decker silsesquioxane (DDSQ) hybrids to synthesize mesoporous phenolic/DDSQ materials having Frank-Kasper (FK) phases (e.g., σ, A15, H, and Z phases). These FK structures are the first to have been prepared using a block copolymer and the first to exist in mesoporous materials. The authors' mesoporous carbon/DDSQ hybrids displayed high capacitance (764 F g-1 at a current of 0.5 A g-1 and 98.4% capacitance retention over 2000 cycles), arising from their high surface areas, high pore volumes, and tunable concentrations of N, O, and Si heteroatoms.


Assuntos
Polietilenoglicóis , Polímeros , Carbono
19.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008773

RESUMO

There is currently a pursuit of synthetic approaches for designing porous carbon materials with selective CO2 capture and/or excellent energy storage performance that significantly impacts the environment and the sustainable development of circular economy. In this study we prepared a new bio-based benzoxazine (AP-BZ) in high yield through Mannich condensation of apigenin, a naturally occurring phenol, with 4-bromoaniline and paraformaldehyde. We then prepared a PA-BZ porous organic polymer (POP) through Sonogashira coupling of AP-BZ with 1,3,6,8-tetraethynylpyrene (P-T) in the presence of Pd(PPh3)4. In situ Fourier transform infrared spectroscopy and differential scanning calorimetry revealed details of the thermal polymerization of the oxazine rings in the AP-BZ monomer and in the PA-BZ POP. Next, we prepared a microporous carbon/metal composite (PCMC) in three steps: Sonogashira coupling of AP-BZ with P-T in the presence of a zeolitic imidazolate framework (ZIF-67) as a directing hard template, affording a PA-BZ POP/ZIF-67 composite; etching in acetic acid; and pyrolysis of the resulting PA-BZ POP/metal composite at 500 °C. Powder X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, and Brunauer-Emmett-Teller (BET) measurements revealed the properties of the as-prepared PCMC. The PCMC material exhibited outstanding thermal stability (Td10 = 660 °C and char yield = 75 wt%), a high BET surface area (1110 m2 g-1), high CO2 adsorption (5.40 mmol g-1 at 273 K), excellent capacitance (735 F g-1), and a capacitance retention of up to 95% after 2000 galvanostatic charge-discharge (GCD) cycles; these characteristics were excellent when compared with those of the corresponding microporous carbon (MPC) prepared through pyrolysis of the PA-BZ POP precursors with a ZIF-67 template at 500 °C.


Assuntos
Benzoxazinas/química , Dióxido de Carbono/química , Carbono/química , Metais/química , Adsorção , Benzoxazinas/síntese química , Varredura Diferencial de Calorimetria , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Eletricidade , Eletroquímica , Nitrogênio/química , Polímeros/química , Porosidade , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria , Difração de Raios X
20.
Molecules ; 26(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572605

RESUMO

In this study, we successfully synthesized two types of meso/microporous carbon materials through the carbonization and potassium hydroxide (KOH) activation for two different kinds of hyper-crosslinked polymers of TPE-CPOP1 and TPE-CPOP2, which were synthesized by using Friedel-Crafts reaction of tetraphenylethene (TPE) monomer with or without cyanuric chloride in the presence of AlCl3 as a catalyst. The resultant porous carbon materials exhibited the high specific area (up to 1100 m2 g-1), total pore volume, good thermal stability, and amorphous character based on thermogravimetric (TGA), N2 adsoprtion/desorption, and powder X-ray diffraction (PXRD) analyses. The as-prepared TPE-CPOP1 after thermal treatment at 800 °C (TPE-CPOP1-800) displayed excellent CO2 uptake performance (1.74 mmol g-1 at 298 K and 3.19 mmol g-1 at 273 K). Furthermore, this material possesses a high specific capacitance of 453 F g-1 at 5 mV s-1 comparable to others porous carbon materials with excellent columbic efficiencies for 10,000 cycle at 20 A g-1.


Assuntos
Dióxido de Carbono/química , Dióxido de Carbono/isolamento & purificação , Carbono/química , Capacitância Elétrica , Fenóis/química , Polímeros/química , Adsorção , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA