Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Endocr J ; 62(9): 787-96, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26096452

RESUMO

Type 2 diabetes mellitus (T2DM) is one of the major health concern among the world. Several treatment options for T2DM are in clinical use, including injecting insulin, promoting insulin secretion by insulin secretagogues, and improving insulin sensitivity by insulin sensitizers. However, increasing the amount of insulin receptor in insulin-target tissues has not been explored. In order to test the efficacy of insulin receptor overexpression for improving glucose control, we established a transgenic mouse line expressing human insulin receptor (INSR). We analyzed, growth, energy balance, and glucose control of INSR-overexpressing db/db mice (INSR; db/db), which we produced by mating INSR transgenic mice with db/db mice, a genetic model of obesity due to insufficient leptin signaling. Compared to db/db mice, INSR; db/db mice were rescued from hyperphagia and obesity, leading to improved blood glucose levels. Unexpectedly, however, INSR; db/db mice presented with stunted growth, accompanied by decreased plasma levels of free IGF1 and IGFBP-3, indicating the down-regulation of GH/IGF1 axis. These phenotypes were observed in INSR; db/db mice but not in INSR littermates. Meanwhile, bone defects observed in db/db male mice were not rescued. Moreover, improved blood glucose was not accompanied by improved insulin sensitivity. Therefore, overexpression of insulin receptor improves obese and diabetic phenotypes in db/db mice, with consequences on growth.


Assuntos
Glicemia/genética , Peso Corporal/genética , Diabetes Mellitus Tipo 2/genética , Metabolismo Energético/genética , Resistência à Insulina/genética , Obesidade/genética , Receptor de Insulina/genética , Animais , Diabetes Mellitus Tipo 2/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Leptina/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Obesidade/metabolismo , Fenótipo , Receptor de Insulina/metabolismo
2.
Diabetologia ; 57(4): 819-31, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24374551

RESUMO

AIMS/HYPOTHESIS: Obesity is associated with ageing and increased energy intake, while restriction of energy intake improves health and longevity in multiple organisms; the NAD(+)-dependent deacetylase sirtuin 1 (SIRT1) is implicated in this process. Pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons in the arcuate nucleus (ARC) of the hypothalamus are critical for energy balance regulation, and the level of SIRT1 protein decreases with age in the ARC. In the current study we tested whether conditional Sirt1 overexpression in mouse POMC or AgRP neurons prevents age-associated weight gain and diet-induced obesity. METHODS: We targeted Sirt1 cDNA sequence into the Rosa26 locus and generated conditional Sirt1 knock-in mice. These mice were crossed with mice harbouring either Pomc-Cre or Agrp-Cre and the metabolic variables, food intake, energy expenditure and sympathetic activity in adipose tissue of the resultant mice were analysed. We also used a hypothalamic cell line to investigate the molecular mechanism by which Sirt1 overexpression modulates leptin signalling. RESULTS: Conditional Sirt1 overexpression in mouse POMC or AgRP neurons prevented age-associated weight gain; overexpression in POMC neurons stimulated energy expenditure via increased sympathetic activity in adipose tissue, whereas overexpression in AgRP neurons suppressed food intake. SIRT1 improved leptin sensitivity in hypothalamic neurons in vitro and in vivo by downregulating protein-tyrosine phosphatase 1B, T cell protein-tyrosine phosphatase and suppressor of cytokine signalling 3. However, these phenotypes were absent in mice consuming a high-fat, high-sucrose diet due to decreases in ARC SIRT1 protein and hypothalamic NAD(+) levels. CONCLUSIONS/INTERPRETATION: ARC SIRT1 is a negative regulator of energy balance, and decline in ARC SIRT1 function contributes to disruption of energy homeostasis by ageing and diet-induced obesity.


Assuntos
Hipotálamo/metabolismo , Leptina/farmacologia , Sirtuína 1/metabolismo , Aumento de Peso/fisiologia , Animais , Calorimetria Indireta , Genótipo , Hipotálamo/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Sirtuína 1/genética , Aumento de Peso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA