RESUMO
In recent years, proximity labeling has established itself as an unbiased and powerful approach to map the interactome of specific proteins. Although physiological expression of labeling enzymes is beneficial for the mapping of interactors, generation of the desired cell lines remains time-consuming and challenging. Using our established pipeline for rapid generation of C- and N-terminal CRISPR-Cas9 knock-ins (KIs) based on antibiotic selection, we were able to compare the performance of commonly used labeling enzymes when endogenously expressed. Endogenous tagging of the µ subunit of the adaptor protein (AP)-1 complex with TurboID allowed identification of known interactors and cargo proteins that simple overexpression of a labeling enzyme fusion protein could not reveal. We used the KI strategy to compare the interactome of the different AP complexes and clathrin and were able to assemble lists of potential interactors and cargo proteins that are specific for each sorting pathway. Our approach greatly simplifies the execution of proximity labeling experiments for proteins in their native cellular environment and allows going from CRISPR transfection to mass spectrometry analysis and interactome data in just over a month.
Assuntos
Sistemas CRISPR-Cas , Humanos , Técnicas de Introdução de Genes , Mapeamento de Interação de Proteínas/métodos , Células HEK293RESUMO
Antibiotic resistance is a continuously increasing concern for public healthcare. Understanding resistance mechanisms and their emergence is crucial for the development of new antibiotics and their effective use. The peptide antibiotic albicidin is such a promising candidate that, as a gyrase poison, shows bactericidal activity against a wide range of gram-positive and gram-negative bacteria. Here, we report the discovery of a gene amplification-based mechanism that imparts an up to 1000-fold increase in resistance levels against albicidin. RNA sequencing and proteomics data show that this novel mechanism protects Salmonella Typhimurium and Escherichia coli by increasing the copy number of STM3175 (YgiV), a transcription regulator with a GyrI-like small molecule binding domain that traps albicidin with high affinity. X-ray crystallography and molecular docking reveal a new conserved motif in the binding groove of the GyrI-like domain that can interact with aromatic building blocks of albicidin. Phylogenetic studies suggest that this resistance mechanism is ubiquitous in gram-negative bacteria, and our experiments confirm that STM3175 homologs can confer resistance in pathogens such as Vibrio vulnificus and Pseudomonas aeruginosa.
Assuntos
Antibacterianos , Amplificação de Genes , Antibacterianos/farmacologia , Simulação de Acoplamento Molecular , Filogenia , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/metabolismoRESUMO
Isogenic cells respond in a heterogeneous manner to interferon. Using a micropatterning approach combined with high-content imaging and spatial analyses, we characterized how the population context (position of a cell with respect to neighboring cells) of epithelial cells affects their response to interferons. We identified that cells at the edge of cellular colonies are more responsive than cells embedded within colonies. We determined that this spatial heterogeneity in interferon response resulted from the polarized basolateral interferon receptor distribution, making cells located in the center of cellular colonies less responsive to ectopic interferon stimulation. This was conserved across cell lines and primary cells originating from epithelial tissues. Importantly, cells embedded within cellular colonies were not protected from viral infection by apical interferon treatment, demonstrating that the population context-driven heterogeneous response to interferon influences the outcome of viral infection. Our data highlights that the behavior of isolated cells does not directly translate to their behavior in a population, placing the population context as one important factor influencing heterogeneity during interferon response in epithelial cells.
Assuntos
Interferons , Viroses , Humanos , Interferons/farmacologia , Interferons/metabolismo , Células Epiteliais/metabolismo , Linhagem Celular , Viroses/metabolismoRESUMO
Recent advances in imaging technology have highlighted that scaffold proteins and receptors are arranged in subsynaptic nanodomains. The synaptic membrane-associated guanylate kinase (MAGUK) scaffold protein membrane protein palmitoylated 2 (MPP2) is a component of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-associated protein complexes and also binds to the synaptic cell adhesion molecule SynCAM 1. Using superresolution imaging, we show that-like SynCAM 1-MPP2 is situated at the periphery of the postsynaptic density (PSD). In order to explore MPP2-associated protein complexes, we used a quantitative comparative proteomics approach and identified multiple γ-aminobutyric acid (GABA)A receptor subunits among novel synaptic MPP2 interactors. In line with a scaffold function for MPP2 in the assembly and/or modulation of intact GABAA receptors, manipulating MPP2 expression had effects on inhibitory synaptic transmission. We further show that GABAA receptors are found together with MPP2 in a subset of dendritic spines and thus highlight MPP2 as a scaffold that serves as an adaptor molecule, linking peripheral synaptic elements critical for inhibitory regulation to central structures at the PSD of glutamatergic synapses.
Assuntos
Proteínas de Membrana , Densidade Pós-Sináptica , Proteínas de Membrana/metabolismo , Densidade Pós-Sináptica/metabolismo , Receptores de AMPA/metabolismo , Receptores de GABA-A , Sinapses/metabolismoRESUMO
Protein-templated fragment ligation was established as a method for the rapid identification of high affinity ligands, and multicomponent reactions (MCR) such as the Ugi four-component reaction (Ugi 4CR) have been efficient in the synthesis of drug candidates. Thus, the combination of both strategies should provide a powerful approach to drug discovery. Here, we investigate protein-templated Ugi 4CR quantitatively using a fluorescence-based enzyme assay, HPLC-QTOF mass spectrometry (MS), and native protein MS with SARS-CoV-2 main protease as template. Ugi reactions were analyzed in aqueous buffer at varying pH and fragment concentration. Potent inhibitors of the protease were formed in presence of the protein via Ugi 4CR together with Ugi three-component reaction (Ugi 3CR) products. Binding of inhibitors to the protease was confirmed by native MS and resulted in the dimerization of the protein target. Formation of Ugi products was, however, more efficient in the non-templated reaction, apparently due to interactions of the protein with the isocyanide and imine fragments. Consequently, in-situ ligation screening of Ugi 4CR products was identified as a superior approach to the discovery of SARS-CoV-2 protease inhibitors.
Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Proteases 3C de Coronavírus , Cianetos/química , Endopeptidases , Inibidores de ProteasesRESUMO
Biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) and their recycling after splicing require numerous assembly/recycling factors whose modes of action are often poorly understood. The intrinsically disordered TSSC4 protein has been identified as a nuclear-localized U5 snRNP and U4/U6-U5 tri-snRNP assembly/recycling factor, but how TSSC4's intrinsic disorder supports TSSC4 functions remains unknown. Using diverse interaction assays and cryogenic electron microscopy-based structural analysis, we show that TSSC4 employs four conserved, non-contiguous regions to bind the PRPF8 Jab1/MPN domain and the SNRNP200 helicase at functionally important sites. It thereby inhibits SNRNP200 helicase activity, spatially aligns the proteins, coordinates formation of a U5 sub-module and transiently blocks premature interaction of SNRNP200 with at least three other spliceosomal factors. Guided by the structure, we designed a TSSC4 variant that lacks stable binding to the PRPF8 Jab1/MPN domain or SNRNP200 in vitro. Comparative immunoprecipitation/mass spectrometry from HEK293 nuclear extract revealed distinct interaction profiles of wild type TSSC4 and the variant deficient in PRPF8/SNRNP200 binding with snRNP proteins, other spliceosomal proteins as well as snRNP assembly/recycling factors and chaperones. Our findings elucidate molecular strategies employed by an intrinsically disordered protein to promote snRNP assembly, and suggest multiple TSSC4-dependent stages during snRNP assembly/recycling.
Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Supressoras de Tumor/metabolismo , DNA Helicases/metabolismo , Células HEK293 , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos/metabolismoRESUMO
Inflammatory bowel disease (IBD) is a chronic inflammatory condition that affects humans and several domestic animal species, including cats and dogs. In this study, we have analyzed duodenal organoids derived from canine IBD patients using quantitative proteomics. Our objective was to investigate whether these organoids show phenotypic traits of the disease compared with control organoids obtained from healthy donors. To this aim, IBD and control organoids were subjected to quantitative proteomics analysis via liquid chromatography-mass spectrometry. The obtained data revealed notable differences between the two groups. The IBD organoids exhibited several alterations at the levels of multiple proteins that are consistent with some known IBD alterations. The observed phenotype in the IBD organoids to some degree mirrors the corresponding intestinal condition, rendering them a compelling approach for investigating the disease and advancing drug exploration. Additionally, our study revealed similarities to some human IBD biomarkers, further emphasizing the translational and comparative value of dogs for future investigations related to the causes and treatment of IBD. Relevant proteins such as CALU, FLNA, MSN and HMGA2, which are related to intestinal diseases, were all upregulated in the IBD duodenal organoids. At the same time, other proteins such as intestinal keratins and the mucosal immunity PIGR were depleted in these IBD organoids. Based on these findings, we propose that these organoids could serve as a valuable tool for evaluating the efficacy of therapeutic interventions against canine IBD.
Assuntos
Doenças Inflamatórias Intestinais , Intestinos , Cães , Animais , Humanos , Gatos , Doenças Inflamatórias Intestinais/veterinária , Animais Domésticos , Duodeno , OrganoidesRESUMO
Applications of key technologies in biomedical research, such as qRT-PCR or LC-MS-based proteomics, are generating large biological (-omics) datasets which are useful for the identification and quantification of biomarkers in any research area of interest. Genome, transcriptome and proteome databases are already available for a number of model organisms including vertebrates and invertebrates. However, there is insufficient information available for protein sequences of certain invertebrates, such as the great pond snail Lymnaea stagnalis, a model organism that has been used highly successfully in elucidating evolutionarily conserved mechanisms of memory function and dysfunction. Here, we used a bioinformatics approach to designing and benchmarking a comprehensive central nervous system (CNS) proteomics database (LymCNS-PDB) for the identification of proteins from the CNS of Lymnaea by LC-MS-based proteomics. LymCNS-PDB was created by using the Trinity TransDecoder bioinformatics tool to translate amino acid sequences from mRNA transcript assemblies obtained from a published Lymnaea transcriptomics database. The blast-style MMSeq2 software was used to match all translated sequences to UniProtKB sequences for molluscan proteins, including those from Lymnaea and other molluscs. LymCNS-PDB contains 9628 identified matched proteins that were benchmarked by performing LC-MS-based proteomics analysis with proteins isolated from the Lymnaea CNS. MS/MS analysis using the LymCNS-PDB database led to the identification of 3810 proteins. Only 982 proteins were identified by using a non-specific molluscan database. LymCNS-PDB provides a valuable tool that will enable us to perform quantitative proteomics analysis of protein interactomes involved in several CNS functions in Lymnaea, including learning and memory and age-related memory decline.
Assuntos
Biologia Computacional , Lymnaea , Animais , Benchmarking , Sistema Nervoso Central , Cromatografia Líquida , Lymnaea/genética , Proteínas/metabolismo , Espectrometria de Massas em TandemRESUMO
Nephridiophagids are unicellular fungi (Chytridiomycota), which infect the Malpighian tubules of insects. While most life cycle features are known, the effects of these endobionts on their hosts remain poorly understood. Here, we present results on the influence of an infection of the cockroach Blattella germanica with Nephridiophaga blattellae (Ni = Nephridiophaga-infected) on physical, physiological, and reproductive fitness parameters. Since the gut nematode Blatticola blattae is a further common parasite of B. germanica, we included double infected cockroaches (N + Ni = nematode plus Ni) in selected experiments. Ni individuals had lower fat reserves and showed reduced mobility. The lifespan of adult hosts was only slightly affected in these individuals but significantly shortened when both Nephridiophaga and nematodes were present. Ni as well as N + Ni females produced considerably less offspring than parasite-free (P-free) females. Immune parameters such as the number of hemocytes and phenoloxidase activity were barely changed by Nephridiophaga and/or nematode infections, while the ability to detoxify pesticides decreased. Quantitative proteomics from hemolymph of P-free, Ni, and N + Ni populations revealed clear differences in the expression profiles. For Ni animals, for example, the down-regulation of fatty acid synthases corroborates our finding of reduced fat reserves. Our study clearly shows that an infection with Nephridiophaga (and nematodes) leads to an overall reduced host fitness.
Assuntos
Blattellidae , Quitridiomicetos , Animais , Feminino , Hemolinfa , Insetos , Estágios do Ciclo de VidaRESUMO
The RNA helicase bad response to refrigeration 2 homolog (BRR2) is required for the activation of the spliceosome before the first catalytic step of RNA splicing. BRR2 represents a distinct subgroup of Ski2-like nucleic acid helicases whose members comprise tandem helicase cassettes. Only the N-terminal cassette of BRR2 is an active ATPase and can unwind substrate RNAs. The C-terminal cassette represents a pseudoenzyme that can stimulate RNA-related activities of the N-terminal cassette. However, the molecular mechanisms by which the C-terminal cassette modulates the activities of the N-terminal unit remain elusive. Here, we show that N- and C-terminal cassettes adopt vastly different relative orientations in a crystal structure of BRR2 in complex with an activating domain of the spliceosomal Prp8 protein at 2.4 Å resolution compared with the crystal structure of BRR2 alone. Likewise, inspection of BRR2 structures within spliceosomal complexes revealed that the cassettes occupy different relative positions and engage in different intercassette contacts during different splicing stages. Engineered disulfide bridges that locked the cassettes in two different relative orientations had opposite effects on the RNA-unwinding activity of the N-terminal cassette, with one configuration enhancing and the other configuration inhibiting RNA unwinding compared with the unconstrained protein. Moreover, we found that differences in relative positioning of the cassettes strongly influence RNA-stimulated ATP hydrolysis by the N-terminal cassette. Our results indicate that the inactive C-terminal cassette of BRR2 can both positively and negatively affect the activity of the N-terminal helicase unit from a distance.
Assuntos
Splicing de RNA/genética , Proteínas de Ligação a RNA/ultraestrutura , Ribonucleoproteínas Nucleares Pequenas/ultraestrutura , Spliceossomos/genética , Adenosina Trifosfatases/genética , Catálise , Cristalografia por Raios X , Humanos , Conformação Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos/ultraestrutura , Especificidade por SubstratoRESUMO
Protein scaffolds at presynaptic active zone membranes control information transfer at synapses. For scaffold biogenesis and maintenance, scaffold components must be safely transported along axons. A spectrum of kinases has been suggested to control transport of scaffold components, but direct kinase-substrate relationships and operational principles steering phosphorylation-dependent active zone protein transport are presently unknown. Here, we show that extensive phosphorylation of a 150-residue unstructured region at the N-terminus of the highly elongated Bruchpilot (BRP) active zone protein is crucial for ordered active zone precursor transport in Drosophila Point mutations that block SRPK79D kinase-mediated phosphorylation of the BRP N-terminus interfered with axonal transport, leading to BRP-positive axonal aggregates that also contain additional active zone scaffold proteins. Axonal aggregates formed only in the presence of non-phosphorylatable BRP isoforms containing the SRPK79D-targeted N-terminal stretch. We assume that specific active zone proteins are pre-assembled in transport packages and are thus co-transported as functional scaffold building blocks. Our results suggest that transient post-translational modification of a discrete unstructured domain of the master scaffold component BRP blocks oligomerization of these building blocks during their long-range transport.
Assuntos
Transporte Axonal/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Fosforilação , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismoRESUMO
RATIONALE: Pathological biomechanical signaling induces vascular anomalies including cerebral cavernous malformations (CCM), which are caused by a clonal loss of CCM1/KRIT1 (Krev interaction trapped protein 1), CCM2/MGC4607, or CCM3/PDCD10. Why patients typically experience lesions only in lowly perfused venous capillaries of the cerebrovasculature is completely unknown. OBJECTIVE: In contrast, animal models with a complete loss of CCM proteins lack a functional heart and blood flow and exhibit vascular anomalies within major blood vessels as well. This finding raises the possibility that hemodynamics may play a role in the context of this vascular pathology. METHODS AND RESULTS: Here, we used a genetic approach to restore cardiac function and blood flow in a zebrafish model of CCM1. We find that blood flow prevents cardiovascular anomalies including a hyperplastic expansion within a large Ccm1-deficient vascular bed, the lateral dorsal aorta. CONCLUSIONS: This study identifies blood flow as an important physiological factor that is protective in the cause of this devastating vascular pathology.
Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Modelos Animais de Doenças , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico por imagem , Animais , Animais Geneticamente Modificados , Neoplasias do Sistema Nervoso Central/fisiopatologia , Angiografia Cerebral/métodos , Hemangioma Cavernoso do Sistema Nervoso Central/fisiopatologia , Peixe-ZebraRESUMO
Evolution of bacterial tolerance to antimicrobials precedes evolution of resistance and may result in cross-tolerance, cross-resistance, or collateral sensitivity to other antibiotics. Transient exposure of gut bacteria to glyphosate, the world's most widely used herbicide, has been linked to the activation of the stress response and changes in susceptibility to antibiotics. In this study, we investigated whether chronic exposure to a glyphosate-based herbicide (GBH) results in resistance, a constitutive activation of the tolerance and stress responses, and cross-tolerance or cross-resistance to antibiotics. Of the 10 farm animal-derived clinical isolates of Salmonella enterica subjected to experimental evolution in increasing concentrations of GBH, three isolates showed stable resistance with mutations associated with the glyphosate target gene aroA and no fitness costs. Global quantitative proteomics analysis demonstrated activation of the cellular tolerance and stress response during the transient exposure to GBH but not constitutively in the resistant mutants. Resistant mutants displayed no cross-resistance or cross-tolerance to antibiotics. These results suggest that while transient exposure to GBH triggers cellular tolerance response in Salmonella enterica, this response does not become genetically fixed after selection for resistance to GBH and does not result in increased cross-tolerance or cross-resistance to clinically important antibiotics under our experimental conditions.IMPORTANCE Glyphosate-based herbicides (GBH) are among the world's most popular, with traces commonly found in food, feed, and the environment. Such high ubiquity means that the herbicide may come into contact with various microorganisms, on which it acts as an antimicrobial, and it may select for resistance and cross-resistance to clinically important antibiotics. It is therefore important to estimate whether the widespread use of pesticides may be an underappreciated source of antibiotic-resistant microorganisms that may compromise efficiency of antibiotic treatments in humans and animals.
Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Salmonella enterica/efeitos dos fármacos , Seleção Genética , Glicina/farmacologia , Herbicidas/farmacologia , Salmonella enterica/genética , GlifosatoRESUMO
Intestinal release of dietary triglycerides via chylomicrons is the major contributor to elevated postprandial triglyceride levels. Dietary lipids can be transiently stored in cytosolic lipid droplets (LDs) located in intestinal enterocytes for later release. ADP ribosylation factor-related protein 1 (ARFRP1) participates in processes of LD growth in adipocytes and in lipidation of lipoproteins in liver and intestine. This study aims to explore the impact of ARFRP1 on LD organization and its interplay with chylomicron-mediated triglyceride release in intestinal-like Caco-2â¯cells. Suppression of Arfrp1 reduced release of intracellularly derived triglycerides (0.69-fold) and increased the abundance of transitional endoplasmic reticulum ATPase TERA/VCP, fatty acid synthase-associated factor 2 (FAF2) and perilipin 2 (Plin2) at the LD surface. Furthermore, TERA/VCP and FAF2 co-occurred more frequently with ATGL at LDs, suggesting a reduced adipocyte triglyceride lipase (ATGL)-mediated lipolysis. Accordingly, inhibition of lipolysis reduced lipid release from intracellular storage pools by the same magnitude as Arfrp1 depletion. Thus, the lack of Arfrp1 increases the abundance of lipolysis-modulating enzymes TERA/VCP, FAF2 and Plin2 at LDs, which might decrease lipolysis and reduce availability of fatty acids for triglyceride synthesis and their release via chylomicrons.
Assuntos
Fatores de Ribosilação do ADP/farmacologia , Mucosa Intestinal/metabolismo , Intestinos/citologia , Gotículas Lipídicas/química , Triglicerídeos/metabolismo , Células CACO-2 , Quilomícrons/metabolismo , Retículo Endoplasmático/metabolismo , Ácidos Graxos/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Lipólise , Triglicerídeos/biossínteseRESUMO
Stimulation of T cells leads to distinct changes of their adhesive and migratory properties. Signal propagation from activated receptors to integrins depends on scaffolding proteins such as the adhesion and degranulation promoting adaptor protein (ADAP)(1). Here we have comprehensively investigated the phosphotyrosine interactome of ADAP in T cells and define known and novel interaction partners of functional relevance. While most phosphosites reside in unstructured regions of the protein, thereby defining classical SH2 domain interaction sites for master regulators of T cell signaling such as SLP76, Fyn-kinase, and NCK, other binding events depend on structural context. Interaction proteomics using different ADAP constructs comprising most of the known phosphotyrosine motifs as well as the structured domains confirm that a distinct set of proteins is attracted by pY571 of ADAP, including the ζ-chain-associated protein kinase of 70 kDa (ZAP70). The interaction of ADAP and ZAP70 is inducible upon stimulation either of the T cell receptor (TCR) or by chemokine. NMR spectroscopy reveals that the N-terminal SH2 domains within a ZAP70-tandem-SH2 construct is the major site of interaction with phosphorylated ADAP-hSH3(N) and microscale thermophoresis (MST) indicates an intermediate binding affinity (Kd = 2.3 µm). Interestingly, although T cell receptor dependent events such as T cell/antigen presenting cell (APC) conjugate formation and adhesion are not affected by mutation of Y571, migration of T cells along a chemokine gradient is compromised. Thus, although most phospho-sites in ADAP are linked to T cell receptor related functions we have identified a unique phosphotyrosine that is solely required for chemokine induced T cell behavior.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Quimiocina CXCL12/farmacologia , Linfócitos T/efeitos dos fármacos , Proteína-Tirosina Quinase ZAP-70/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Sítios de Ligação , Adesão Celular/efeitos dos fármacos , Degranulação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL12/genética , Quimiocina CXCL12/imunologia , Expressão Gênica , Humanos , Células Jurkat , Cinética , Modelos Moleculares , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Linfócitos T/citologia , Linfócitos T/imunologia , Tirosina/metabolismo , Proteína-Tirosina Quinase ZAP-70/imunologiaRESUMO
INTRODUCTION: The Adhesion and Degranulation promoting Adaptor Protein (ADAP) is phosphorylated upon T cell activation and acts as a scaffold for the formation of a signaling complex that integrates molecular interactions between T cell or chemokine receptors, the actin cytoskeleton, and integrin-mediated cellular adhesion and migration. AREAS COVERED: This article reviews current knowledge of the functions of the adapter protein ADAP in T cell signaling with a focus on the role of individual phosphotyrosine (pY) motifs for SH2 domain mediated interactions. The data presented was obtained from literature searches (PubMed) as well as the authors own research on the topic. Expert commentary: ADAP can be regarded as a paradigmatic example of how tyrosine phosphorylation sites serve as dynamic interaction hubs. Molecular crowding at unstructured and redundant sites (pY595, pY651) is contrasted by more specific interactions enabled by the three-dimensional environment of a particular phosphotyrosine motif (pY571).
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Humanos , Fosforilação , Tirosina/química , Tirosina/metabolismoRESUMO
Senescence or biological aging impacts a vast variety of molecular and cellular processes. To date, it is unknown whether CD4(+) Th cells display an age-dependent bias for development into specific subpopulations. In this study, we show the appearance of a distinct CD4(+) T cell subset expressing IL-4 at an early stage of development in infant adenoids and cord blood that is lost during aging. We identified by flow cytometric, fluorescent microscopic, immunoblot, and mass spectrometric analysis a population of CD4(+) T cells that expressed an unglycosylated isoform of IL-4. This T cell subpopulation was found in neonatal but not in adult CD4(+) T cells. Furthermore, we show that the mRNA of the Th2 master transcription factor GATA3 is preferentially expressed in neonatal CD4(+) T cells. The Th2 phenotype of the IL-4(+)CD4(+) T cells could be reinforced in the presence of TGF-ß. Although the IL-4(+)CD4(+) T cells most likely originate from CD31(+)CD4(+) T recent thymic emigrants, CD31 was downregulated prior to secretion of IL-4. Notably, the secretion of IL-4 requires a so far unidentified trigger in neonatal T cells. This emphasizes that cytokine expression and secretion are differentially regulated processes. Our data support the hypothesis of an endogenously poised cytokine profile in neonates and suggest a link between cytokine production and the developmental stage of an organism. The determination of the IL-4 isoform-expressing cells in humans might allow the identification of Th2 precursor cells, which could provide novel intervention strategies directed against Th2-driven immunopathologies such as allergies.
Assuntos
Interleucina-4/imunologia , Células Th2/imunologia , Feminino , Fator de Transcrição GATA3/imunologia , Regulação da Expressão Gênica/imunologia , Glicosilação , Humanos , Hipersensibilidade/imunologia , Lactente , Recém-Nascido , Masculino , Isoformas de Proteínas/imunologia , Células Th2/citologia , Fator de Crescimento Transformador beta/imunologiaRESUMO
Proteomics approaches using MS in combination with affinity purification have emerged as powerful tools to study protein-protein interactions. Here we make use of the specificity of sortase A transpeptidation reaction to prepare affinity matrices in which a protein bait is covalently linked to the matrix via a short C-terminal linker region. As a result of this site-directed immobilization, the bait remains functionally accessible to protein interactions. To apply this approach, we performed SILAC-based pull-down experiments and demonstrate the suitability of the approach.
Assuntos
Aminoaciltransferases/química , Proteínas de Bactérias/química , Cisteína Endopeptidases/química , Enzimas Imobilizadas/química , Mapeamento de Interação de Proteínas/métodos , Sequência de Aminoácidos , Cromatografia de Afinidade , Humanos , Células Jurkat , Proteômica , Espectrometria de Massas em TandemRESUMO
Saponin-mediated endosomal escape is a mechanism that increases the cytotoxicity of type I ribosome-inactivating proteins (type I RIPs). In order to actualize their cytotoxicity, type I RIPs must be released into the cytosol after endocytosis. Without release from the endosomes, type I RIPs are largely degraded and cannot exert their cytotoxic effects. Certain triterpene saponins are able to induce the endosomal escape of these type I RIPs, thus increasing their cytotoxicity. However, the molecular mechanism underlying the endosomal escape enhancement of type I RIPs by triterpene saponins has not been fully elucidated. In this report, we investigate the involvement of the basic amino acid residues of dianthin-30, a type I RIP isolated from the plant Dianthus caryophyllus L., in endosomal escape enhancement using alanine scanning. Therefore, we designed 19 alanine mutants of dianthin-30. Each mutant was combined with SO1861, a triterpene saponin isolated from the roots of Saponaria officinalis L., and subjected to a cytotoxicity screening in Neuro-2A cells. Cytotoxic screening revealed that dianthin-30 mutants with lysine substitutions did not impair the endosomal escape enhancement. There was one particular mutant dianthin, Arg24Ala, that exhibited significantly reduced synergistic cytotoxicity in three mammalian cell lines. However, this reduction was not based on an altered interaction with SO1861. It was, rather, due to the impaired endocytosis of dianthin Arg24Ala into the cells.
Assuntos
Endocitose , Proteínas Inativadoras de Ribossomos , Animais , Camundongos , Arginina , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Análise Mutacional de DNA , Endocitose/efeitos dos fármacos , Endossomos/metabolismo , Mutação , Saponinas/metabolismo , Proteínas Inativadoras de Ribossomos/genética , Proteínas Inativadoras de Ribossomos/metabolismo , Dianthus/genética , Dianthus/metabolismoRESUMO
Introduction: Bloodwork is a widely used diagnostic tool in veterinary medicine, as diagnosis and therapeutic interventions often rely on blood biomarkers. However, biomarkers available in veterinary medicine often lack sensitivity or specificity. Mass spectrometry-based proteomics technology has been extensively used in the analysis of biological fluids. It offers excellent potential for a more comprehensive characterization of the plasma proteome in veterinary medicine. Methods: In this study, we aimed to identify and quantify plasma proteins in a cohort of healthy dogs and compare two techniques for depleting high-abundance plasma proteins to enable the detection of lower-abundance proteins via label-free quantification liquid chromatography-mass spectrometry. We utilized surplus lithium-heparin plasma from 30 healthy dogs, subdivided into five groups of pooled plasma from 6 randomly selected individuals each. Firstly, we used a commercial kit to deplete high-abundance plasma proteins. Secondly, we employed an in-house method to remove albumin using Blue-Sepharose. Results and discussion: Among all the samples, some of the most abundant proteins identified were apolipoprotein A and B, albumin, alpha-2-macroglobulin, fibrinogen beta chain, fibronectin, complement C3, serotransferrin, and coagulation factor V. However, neither of the depletion techniques achieved significant depletion of highly abundant proteins. Despite this limitation, we could detect and quantify many clinically relevant proteins. Determining the healthy canine proteome is a crucial first step in establishing a reference proteome for canine plasma. After enrichment, this reference proteome can later be utilized to identify protein markers associated with different diseases, thereby contributing to the diagnosis and prognosis of various pathologies.